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Advancements in plant protection — the application
of machine learning to the detection of maize infestations
Zastosowanie uczenia maszynowego w wykrywaniu szkodnikow kukurydzy

Abstract. Plant infestations cause significant economic losses in agriculture, necessitating rapid and
accurate detection for optimized agrotechnical operations and reduced environmental pollution. This
study addresses this challenge by proposing a customized convolutional neural network (CNN) archi-
tecture for detecting corn leaf worm infestations in maize. The research focuses on developing unique
CNN models through extensive experimentation, systematically adjusting hyperparameters like opti-
mizers, filter numbers, and kernel sizes. The study’s main contributions include the design of an accu-
rate CNN classifier, and its implementation in a user-friendly smartphone application. The research
highlights the importance of hyperparameter tuning in CNN performance, demonstrating that optimal
configurations lead to high accuracy (up to 95% for accuracy, precision, recall, specificity, and
F1-score). While the current model focuses on a single pest, the findings underscore the potential of
custom CNN classifiers in vision systems for automated crop inspection, offering a promising solution
for minimizing crop losses and the environmental impact of chemical plant protection products.
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INTRODUCTION

The aetiology of plant diseases is multifactorial, with biotic stressors (pathogens,
fungi, bacteria, and insects) and abiotic stressors (weather, soil conditions, and chemicals)
both playing a role [Oliveira 2019]. Plant diseases have the potential to cause significant
damage to agricultural crops, resulting in reduced yields. In the event of a large-scale at-
tack, this can even lead to the complete failure of a crop, with serious economic conse-
quences [Li et al. 2020, Khanramaki et al. 2021]. In order to reduce the negative impact
of diseases on crop quality and yield, it is necessary to detect them quickly. This is
a challenging task due to the labour-intensive and time-consuming nature of traditional
methods of pest and diseases detection and identification. Furthermore, farmers often lack
the necessary knowledge to identify diseases or insects, which can result in the inappro-
priate application of agrochemicals with negative environmental consequences.

Maize is one of the three most important crops in the world, along with rice and wheat.
However, since the end of the second decade of the twenty-first century, it has ranked
second in terms of area sown. A number of factors have contributed to this state of affairs,
the most significant of which are its versatility of use (as fodder, food, and for industrial and
energy purposes), high yields, and the advancement of breeding progress (including the de-
velopment of hybrid cultivars and the breeding of early-maturing cultivars). The earlier mat-
uration of the cultivars permits their cultivation in cooler climates with a shorter growing
season. Poland provides an illustrative example, where the area planted with this species
increased nearly threefold (2.84 times) over a 10-year period (2010-2020) [FAOSTAT
2024]. It is regrettable that the expansion of maize cultivation is leading to an intensifica-
tion of pest pressure, particularly from those species that have been identified as the most
problematic. Until recently, the European corn borer (Ostrinia nubilalis H.) and the frit
fly (Oscinella frit L.) were considered the most significant pests in Europe. However, more
recently, the western corn rootworm (Diabrotica virgifera KeConte) has emerged as
a growing concern, and with the anticipated effects of climate change, the corn leaf worm
(Spodoptera frugiperda) may become a prominent issue in the near future.

The corn leaf worm is a polyphagous pest that most often attacks plants of the panicle,
nightshade, cabbage family, as well as many vegetables. Of the cereals, it is most danger-
ous in maize crops. Its grey-brown front and white back wings are distinguished by distinct
brown veins. The voracious larvae are the most damaging, and their distinctive feature is
the inverted Y on their head. They cause leaf skeletonization, which significantly reduces
photosynthetic capacity of crops. They also often damage flower buds, plant growth tips
and even cobs and grain, resulting in reduced maize yield and quality. As reported by van
der Berg et al. [2021], yield losses of up to 30% to 70% have been documented in the
Americas, while losses of 11% to 100% have been observed in Africa. The corn leaf worm
is mainly known for causing significant damage to crops in South America, however, there
have been observations of its migration to colder regions of the world. Despite being con-
sidered a thermophilic species, the pest has also been observed in cooler regions, including
Europe [Jeger et al. 2018, Babendreier et al. 2022].

The efficacy of the utilisation of agrochemicals is contingent upon the prompt identi-
fication of crop diseases. The expeditious advancement of image recognition algorithms
employing machine learning in recent years has rendered the real-time identification of
selected crop pests and diseases. One limitation of this method of detecting threats to crops
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is the necessity to represent the effects of infection in the image. Additionally, the acqui-
sition of images at different crop growth stages and under different lighting conditions is
important because these factors affect the quality of the classification. Based on image
data, machine learning-based vision systems for automatic detection of pests and crop
infections are being developed. Image processing with SVM classifier was utilised by
Ebrahimi et al. [2017] to detect of thrips on the strawberry canopies in greenhouses. Mo-
han et al. [2016] developed system for detection and recognition of brown spot disease,
leaf blast disease and bacterial blight disease in paddy plants. The methods used were
AdaBoost classifier for detection and k-Nearest Neighbour (k-NN) and Support Vector
Machine (SVM) algorithms for recognition.

In recent years, deep learning methods based on convolutional neural networks
(CNNs) have become a widely used tool in agriculture for the purpose of solving classifi-
cation problems. Examples of such applications include the detection of weeds [Gao et al.
2020, Hasan et al. 2021], plant water stress identification [Kamarudin et al. 2021], yield
prediction [Srivastava et al. 2022], crop type classification [Kussul et al. 2017], as well as
vegetable and fruit quality assessment [Gill et al. 2022]. There are also numerous applica-
tions related to the detection of pests and crop diseases [Jiao et al. 2020, Wang et al. 2020,
Xu et al. 2022, Yang et al. 2022]. The availability of open databases containing images
that can be used as training data represents a significant advantage in the construction of
systems for plant diseases and insects recognition. Ferentinos [2018] employed an open
database comprising 87,848 images of plants belonging to 25 different species. The data-
base was utilized to train five convolutional neural network architectures, namely
AlexNet, AlexNet-OWTBn, GoogLeNet, Overfeat, and VGG. The VGG model yielded
the most optimal results, with a success rate of 99.53%. The RGB insect images from the
three publicly available insect datasets were employed by Thenmozhi and Reddy [2019]
to train a CNN architecture. The authors compared their model with pre-trained models
such as AlexNet, ResNet, and VGG. The original images were converted to grayscale. The
CNN model developed in this work demonstrated superior performance to the pre-trained
models with transfer learning, achieving classification accuracy approximately 2% higher
for the tested datasets. The PlantVillage dataset [Hughes and Salathe 2015] which contains
images of common diseases across a range of crops, has been used by some researchers
[Mohanty et al. 2016, Barbedo 2018, Ferentinos 2018]. Computer vision systems that em-
ploy convolutional neural networks are integral components of comprehensive solutions,
including harvesting robots [Jia et al. 2020], automated sprayers [Khan et al. 2021, Storey
et al. 2022], and smartphone applications, which facilitate the prediction of yields [Covi-
ello et al. 2020] and the identification of weeds, pests, and crop diseases [Loyani and Ma-
chuve 2021, Lanjewar and Panchbhai 2023].

This study evaluates the performance of custom-designed convolutional neural net-
work architectures on images of maize plants, with a focus on how varying hyperparame-
ters affect model accuracy and efficiency. Unlike traditional studies that rely on pre-exist-
ing architectures, the authors developed unique CNN architectures through extensive ex-
perimentation, with numerous iterations and refinements ultimately yielding the presented
model. To optimize performance, the architecture was tested under varying hyperparam-
eters, including different optimizers, the number of filters, and kernel sizes. This explora-
tion led to the investigation of 25 distinct models, each differing in parameters such as
batch size, dropout rate, and optimizer type. By systematically adjusting these parameters,
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we gained insights into how specific choices impact the model’s accuracy and computa-
tional efficiency, providing valuable guidance for CNN design in agricultural image clas-
sification tasks. Furthermore, a CNN classifier was implemented in a smartphone appli-
cation to create a rapid detection tool for maize infestation by corn leaf worms, designed
for use in field conditions.

MATERIALS AND METHODS

Custom CNN model

Convolutional neural networks represent an advanced deep learning architecture that
has significantly transformed computer vision and image analysis tasks. CNNSs are built to
automatically and progressively learn spatial feature hierarchies directly from input data,
adapting to patterns at multiple levels of abstraction. This architecture makes the neural
network particularly well-suited for tasks involving image and video recognition, classifi-
cation, and segmentation. The fundamental building blocks of a CNN include convolu-
tional layers, pooling layers, and fully connected layers. Convolutional layers apply a set
of learnable filters to the input, each detecting specific features at various locations. Pool-
ing layers reduce the spatial dimensions of the feature maps, providing a form of transla-
tional invariance. Fully connected layers, typically used at the end of the network, combine
these features for final classification or regression tasks.

The proposed custom CNN model’s design (fig. 1) incorporates convolutional layers
with multiple kernel sizes spread across them, dropout layers, max-pooling, normalization,
and an early stopping feature. The selection of this structure was informed by the findings
of preliminary research. In the course of this research, 10 CNNs were examined. The re-
sults of the accuracy dependence on the number of adjustable parameters are presented in
table 1.
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Fig. 1. Building blocks of the model
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Table 1. The accuracy of the custom CNN models of various structures

No. Number of parameters Accuracy
1 23,907,650 0.71
2 23,907,842 0.94
3 22,245,186 0.76
4 93,506 0.72
5 2,424,802 0.62
6 11,169,218 0.79
7 23,077,282 0.68
8 10,104,418 0.66
9 31,874 0.87
10 66,599,572 0.95

43

Despite its strengths, the complexity of the proposed CNN model may introduce po-
tential challenges, as larger kernel sizes (7 x 7 and 9 x 9) significantly increase the number
of parameters, potentially resulting in longer training times and higher memory require-
ments. This can be problematic, especially when computational resources are limited
and/or when training a significantly larger amount of data. Additionally, the risk of over-
fitting remains, particularly with a high number of parameters (tab. 2), or in case the train-
ing data is insufficient. To mitigate these issues, we employed the Early Stopping callback
from the Keras library, which halts training when the validation loss ceases to improve,
preventing overfitting. Early Stopping was configured with a patience of five epochs to
accommodate minor fluctuations without prematurely stopping the training. This approach
ensures that the model achieves optimal performance while efficiently utilizing computa-

tional resources.

Table 2. The summary of the custom CNN model

Layer (type) Output shape Number of parameters
Conv2D (400, 400, 32) 896
Dropout (400, 400, 32) -
Conv2D (400, 400, 64) 51,264
MaxPooling (133, 133, 64) -
Dropout (133, 133, 64) -
Conv2D (133,133, 128) 401,536
Pooling (44, 44, 128) -
Conv2D (44, 44, 256) 2,654,464
MaxPooling (22,22, 256) -
Normalization (22,22, 256) 1,024
Flatten 123,904 -
Dense 512 63,439,360
Dropout 512 -
Dense 2 51,026
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Such CNN architecture offers significant advantages — using varying kernel sizes en-
ables the network to capture both fine details and larger structures in the images. For ex-
ample, a 3 x 3 kernel is effective at detecting small features, while larger kernels (5 x 5, 7 x
7, and 9 x 9) are better suited for recognizing bigger patterns and even entire objects.
Dropout layers serve a critical role in regularization by randomly deactivating a certain
fraction of neurons during training, thereby reducing the risk of overfitting and enhancing
the model’s generalization capabilities. Max-pooling layers further reduce the feature map
dimensions and the number of parameters, mainly to lower the computational load. Nor-
malization layers stabilize the training process by making activation distributions more
predictable, leading to a faster and more stable outcome.

This CNN model has several structural and functional advantages for image-based
tasks. The number of filters, starting with 32 filters and progressively increasing up to
256 allows the model to learn hierarchical representations. Initial layers capture basic fea-
tures (like edges and textures) with fewer filters, while deeper layers capture more com-
plex patterns and object parts with more filters. With four convolutional layers, the model
can gradually increase abstraction levels. This depth helps the network capture both low-
level and high-level spatial hierarchies in the data. By varying kernel sizes (3, 5, 7, and 9),
the model learns to detect features at multiple scales within each layer. Smaller kernels
focus on fine-grained details, while larger kernels cover broader spatial regions. This can
help capture both small and large patterns within images, improving robustness and accu-
racy, especially if objects vary in scale within the dataset. Dropout layers with rates of
0.25 and 0.5 help reduce overfitting by randomly ,,dropping out” a fraction of neurons
during each training step, ensuring the model doesn’t become overly reliant on specific
paths within the network. This is especially important in deeper networks. Batch normal-
ization applied before the fully connected layers stabilizes the training process by normal-
izing layer outputs, accelerating convergence, and further reducing overfitting. Each Max-
Pooling layer progressively reduces the spatial dimensions of feature maps, which lowers
computational load, enabling efficient training on large images (e.g., 400 x 400 input size)
as well as helping the network focus on the most prominent features, as MaxPooling se-
lects the strongest activations, aiding in translation invariance. After flattening, a dense
layer with 512 neurons serves as a feature synthesizer, integrating information from all
previous layers before the final classification. The ReLU activation in this dense layer
supports effective learning and gradient flow. A final softmax layer with two outputs is
suitable for binary classification, producing probabilities for each class, which is intuitive
for tasks with two possible labels.

A key feature of the model training process is the use of an Early Stopping function,
which prevents the network from utilizing the full number of epochs (set to 100 in this
case) if it reaches a plateau in performance. This approach allows the model to halt training
as soon as validation performance stabilizes, saving computational resources and prevent-
ing overfitting by avoiding unnecessary training cycles. Setting a high number of epochs
(100) provides enough time for the network to learn complex patterns within the maize
dataset. However, Early Stopping, along with dropout and batch normalization layers, acts
as a balance to prevent overfitting, ensuring that the model does not continue learning
beyond the point of optimal generalization. The dropout layer, in particular, with varia-
tions tested from 0.0 to 0.49, introduces controlled regularization by randomly deactivat-
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ing certain neurons during training. This reduces dependency on specific neurons, enhanc-
ing generalization capability. Interestingly, dropout 0.5 causes the model to crash and run
out of memory.

Dataset overview

The images employed in this study to train the neural network were sourced from
Kaggle’s ,,corn leaf infection dataset™ [Acharya 2020]. This dataset encompasses images
of corn leaves, illustrating both healthy specimens and those affected by pathogens such
as the larvae of Spodoptera frugiperda (fall armyworm moth). The training set consists of
3770 images, with 1794 images representing healthy leaves and 1976 images representing
infected leaves. During training, this data set was divided into training and validation sets
in a ratio of 3 : 1. The test set contains 454 images with 204 healthy and 250 infected
leaves. Illustrative images utilised for the training of the models are depicted in figure 2.

Given the high-definition nature of the original images, data preprocessing was im-
perative. This preprocessing included resizing the images to a uniform resolution, normal-
izing pixel values to standardize the dataset. These preprocessing steps were essential to
ensure the dataset was adequately prepared for effective neural network training, thereby
improving the models’ accuracies in identifying healthy and infected corn leaves under
various conditions.

Fig. 2. Images of healthy (A) and infected (B) plant

Data pre-processing and model parameters

The original high-definition images in the dataset were resized to a resolution of 400 x
400 pixels to accommodate memory limitations. Consequently, the training set was con-
verted into a four-dimensional tensor with dimensions 3770 x 400 x 400 x 3, representing
the number of training images, the size of each image (400 x 400 pixels), and the three
RGB colour channels. Similarly, the test set was converted into a four-dimensional tensor
with dimensions 451 x 400 x 400 x 3. This tensor format facilitates the input of image
data into the neural network for training and subsequent evaluation of the model’s perfor-
mance on unseen data. The dataset was pre-labeled, and a manual verification process was
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conducted to ensure label accuracy. The custom CNN model was employed using the Ten-
sorFlow framework. The study involved over 25 experiments, each training a new neural
network on the same dataset and comparing the aggregate results. These variations were
driven by adjustments in hyperparameters to identify the optimal configuration for accu-
rate disease detection.

The hyperparameters considered during the experiments included the number of
epochs (set to 100), a validation split of 25%, and batch sizes of either 32 or 64. Dropout
rates varied from 0% to 49% (0%, 10%, 30%, and 49%) to assess their impact on model
regularization and performance. Additionally, various optimizers, such as SGD, Adam,
Ada, and Adadelta, were utilized to determine the most effective optimization strategy for
this specific task. These systematic variations and evaluations were critical in refining the
model to achieve high accuracy in distinguishing between healthy and diseased corn
leaves, demonstrating the robustness and versatility of the CNN approach in agricultural
diagnostics.

The CNN models were developed using python programming language, utilizing li-
braries such as NumPy, which is a fundamental tool for array manipulation and computa-
tion. It is widely recognized and utilized in the development and implementation of artifi-
cial neural networks. Complementing NumPy, the pandas library extends its functionality,
serving as a versatile and comprehensive tool for data manipulation and analysis, a kind
of ,,Swiss army knife” in the realm of data science. Creation, training and deployment of
neural networks were performed based on libraries associated with neural networks — spe-
cifically Keras and TensorFlow. After training, the model was deployed for use in the
production phase. The neural network was trained based on the TPU (Tensor Processing
Unit) architecture, enabling the efficient execution of artificial neural networks on the
Google Colab platform, which leverages cloud computing resources.

Evaluation metrics

The following metrics were used to evaluate the quality of the CNN models:
TN + TP

A =
CCUTaY = IN'T TP + FN + FP
orecision — TP
recision = TP n FP
Recall = TP
A = TP F FN
S ificity = ™
pecificity = o5
2 - Precission - Recall
F1 — score =

Precission + Recall

where TP (true positive) and FP (false positive) are the number of correctly and in-
correctly classified images of infected plants. TN (true negative) and FN (false negative)
are the number of correctly and incorrectly classified images of non-infected plants.
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RESULTS

In order to obtain an optimal model for the classification of images of maize leaves
infected and non-infected by corn leaf worms, a range of values for batch size, dropout
and different types of optimisers were tested. The results show notable trends and some
striking contrasts in CNN performance based on hyperparameter variations, as summa-
rised in table 3.

Table 3. The time of training and error metrics for models tested
(the best model is marked in bold)

No. | Optimiser Batch Dropout| Time Accu- | Preci- | oo call Specificity | F1-score
size racy | sion
1 SGD 64 0 5:17:18 | 0.95 0.98 0.90 0.99 0.94
2 SGD 64 0.1 1:20:59 | 0.93 0.94 0.94 0.93 0.94
3 SGD 64 0.3 5:28:35 | 0.76 0.58 0.98 0.66 0.73
4 SGD 64 0.49 2:45:03 | 0.55 1.00 0.55 — 0.71
5 SGD 32 0 3:48:12 | 0.95 0.96 0.95 0.95 0.95
6 SGD 32 0.1 5:37:00 | 0.87 0.78 0.97 0.78 0.86
7 SGD 32 0.3 2:40:45 | 0.90 0.90 0.91 0.88 0.91
8 SGD 32 0.49 1:58:05 | 0.55 1.00 0.55 - 0.71
9 Adam 64 0 2:01:56 | 0.59 1.00 0.57 1.00 0.73
10 Adam 64 0.1 2:10:37 | 0.57 1.00 0.56 1.00 0.72
11 Adam 64 0.3 2:04:28 | 0.64 1.00 0.60 0.98 0.75
12 Adam 64 0.49 2:04:00 | 0.58 0.69 0.61 0.54 0.64
13 Adam 32 0 3:37:54 | 0.84 0.99 0.78 0.99 0.87
14 Adam 32 0.1 4:02:02 | 0.60 1.00 0.58 1.00 0.73
15 Adam 32 0.3 2:30:59 | 0.62 1.00 0.59 1.00 0.75
16 Adam 32 0.49 2:08:37 | 0.55 1.00 0.55 — 0.71
17 | Adadelta 64 0 4:48:49 | 0.91 0.98 0.82 0.98 0.89
18 | Adadelta 64 0.1 2:06:07 | 0.71 1.00 0.65 0.99 0.79
19 | Adadelta 64 0.3 2:05:50 | 0.55 1.00 0.55 — 0.71
20 | Adadelta 64 0.49 1:12:27 | 0.55 1.00 0.55 - 0.71
21 | Adadelta 32 0 7:54:10 | 0.92 0.97 0.90 0.96 0.93

Utilising the Adadelta optimiser with a batch size of 32 and a dropout greater than 0,
the training process encountered an issue pertaining to inadequate memory resources, thus
resulting in its failure.

The findings reveal considerable variability in accuracy of models and computational
time across different configurations, underscoring the critical role of tuning the hyperpa-
rameters in optimizing CNN performance for this specific task. The choice of optimizer
significantly affects accuracy. In general, the best results were obtained with optimiser
SGD and the weakest with optimiser Adam. With the SGD optimiser, the F1-score ranged
from 0.71 to 0.95, while with Adam optimizer the F1-score ranged from 0.64 to 0.87. The
F1-score is defined as the harmonic mean of the precision and recall, and is widely re-
garded as a metric that correctly indicates the reliability of a model [Vujovic 2021]. The
most common metric utilised for the assessment of classification models is accuracy,
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which indicates the percentage of correctly classified cases. Nevertheless, it must be noted
that this particular metric is not sufficiently comprehensive in order to provide a full and
detailed assessment of the quality of the classifier, particularly in instances where the clas-
ses are imbalanced [Chicco and Jurman 2020]. In this work, the test set was reasonably
well balanced, and when employing the SGD optimiser, accuracy was in the range of 0.55
to 0.95, with a value of 0.55 occurring in two models where all cases were classified as
infected. In the context of plant disease diagnosis, the classifier can be utilised as a com-
ponent of a decision-making system, in conjunction with a vision system, to determine the
application of a plant protection product. The utilisation of chemical plant protection prod-
ucts in situations where they are not required has deleterious consequences for the envi-
ronment and the economic aspect of crop management. Conversely, the non-application
of plant protection products in the event of a disease outbreak can lead to yield losses.
Consequently, the classifier developed in this study places significant emphasis on met-
rics such as recall and specificity. Recall signifies the probability of accurately predict-
ing positive cases, whereas specificity ensures the precision of negative classifications
[Baldi et al. 2000]. It was observed that models which achieved high F1-scores and
accuracy values also exhibited high recall and specificity values when employing the
SGD optimiser. The findings revealed no substantial impact of batch size on the quality
of the models obtained. However, it was observed that smaller batch sizes (32) fre-
quently exhibited marginal superiority over larger ones (64). In contrast, the selection
of dropout probability proved to be of significant importance. The incorporation of drop-
out into CNNs is intended to reduce the number of parameters that require adjustment
during model training, thereby counteracting the issue of overfitting and reducing the
necessary training time. The experimental findings demonstrated that the introduction
of dropout typically resulted in a reduction in training time. However, models that em-
ployed a low dropout probability value exhibited higher classification quality. For all
optimisers employed, the highest classification quality was attained for a batch size of
32 and dropout of 0. Models with longer training times did not necessarily result in
higher accuracy, indicating that resource allocation might be optimized by reducing
training time without significantly impacting performance.

Loss

Epoch

Fig. 3. Loss graph of the best model
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The study identified the following models as the most effective classifiers: models 1,
2,5, 7 and 21. The majority of the metrics analysed for these models exceeded 0.9. Model
5, for which all metrics reached a value of at least 0.95, can be considered the most effec-
tive. The loss graph of this model is presented in figure 3 and the confusion matrix showing
the classification results is shown in figure 4. The results of the study suggest that a com-
bination of SGD optimiser, low dropout and smaller batch size tends to give optimal re-
sults for this CNN on the maize dataset, providing the best possible balance between reg-
ularisation and model complexity, thus enhancing the model’s ability to generalise well
across the dataset.

Experimental
Non-infected

Infected

Non-infected Infected

Predicted

Fig. 4. Confusion matrix obtained from test dataset for the best model

In a departure from standard practice, the authors employ the Softmax function in the
final layer for binary classification, even though it is typically used in multi-class scenarios
[Duan et al. 2003]. Consequently, the proposed method proves more efficient than the
conventional sigmoid function.

The mobile application for the detection of maize infestation by corn leaf worms

The application leverages Discord as a platform to facilitate seamless user interaction
while offloading the computational tasks of image recognition and classification to
a hosted cloud environment. This approach offers significant advantages. First, since Dis-
cord is a widely accessible platform, any user with a phone and a Discord account can use
the application without requiring additional installations, making it universally accessible
and user-friendly. Additionally, Discord provides a safe and robust environment where user
management and communication security are inherently managed, reducing the need for de-
velopers to address these aspects independently. By focusing computational resources solely
on the cloud-based image classification, the system achieves optimized performance, as it
does not expend resources on user interface maintenance or peripheral features.

Furthermore, the hosted environment collects all images uploaded by users, enabling
ongoing, seamless improvement of the neural network model through continuous training
with real-world data. This process allows for smooth, quick, and painless updates to the
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network’s capabilities, as the CNN can be re-trained with new data, improving accuracy
and adaptability over time. Importantly, users benefit from these updates without needing
to adjust or update anything on their devices, as all upgrades are handled directly in the
cloud. This architecture thus ensures that users experience consistently enhanced func-
tionality without the complexity or inconvenience of manual updates, making the applica-
tion both highly accessible and continuously refined. Additionally, as only the initial im-
age transfer is necessary for classification, the application remains effective even with
weak internet connectivity, maximizing usability in diverse network environments.

The presented classification system integrates a convolutional neural network with
a user-friendly messaging interface. The application employs a pretrained deep learning
model built using TensorFlow/Keras framework to perform binary classification of plant
images into ,,infected” or ,healthy” categories. The system architecture comprises four
primary components: a Discord bot interface utilizing the Discord.py library for user in-
teraction, a CNN model for image classification, an image preprocessing module leverag-
ing PIL (Pillow) for image manipulation, and a comprehensive logging system for tracking
user interactions and analysis results. The preprocessing pipeline standardizes input im-
ages through RGB conversion, resizing to 400 x 400 pixels, and normalization before
feeding them to the neural network, ensuring consistent model performance across various
input format files up to 8 MB in size.

The system workflow operates through command-based interactions where users submit
plant images via Discord attachments and execute classification using the “!check” com-
mand. Upon receiving an image, the application performs multi-stage validation including
file format verification, size constraints checking, and image integrity assessment before
processing. The CNN model processes the normalized image tensor through batch expansion
and generates predictions with binary output corresponding to disease presence or absence.
The implementation incorporates robust error handling mechanisms at multiple levels —
model loading, image processing, Discord API communication, and file operations — while
maintaining comprehensive audit trails through structured logging. This integration of ma-
chine learning capabilities with a widely-adopted communication platform provides an ac-
cessible and efficient solution for rapid plant health assessment, demonstrating the practical
application of deep learning in agricultural disease detection systems. The application is de-
ployed and accessible through the Discord platform on a dedicated server named Traynia,
providing users with direct access to the classification service.

Figure 5 demonstrates the application’s functionality. As demonstrated in figure 5A,
the primary user interface enables the uploading of a photograph of a plant. As demon-
strated in figure 5B, the image that has been uploaded for the purposes of evaluation is
displayed. As demonstrated in figure 5C, the application yielded the anticipated outcome.

The presented model has the potential for implementation not only on mobile devices,
but also as a component of a vision system installed on a drone, for example. The imple-
mentation of such a system has the potential to facilitate the monitoring of crops, with
a particular focus on large-scale crops. The early and accurate detection of plant infesta-
tions facilitates rapid action to control the pest. This approach has the potential to assist in
the mitigation of crop losses and the reduction of the adverse economic and environmental
consequences associated with the utilisation of chemical plant protection products.
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Fig. 5. The example of the functionality of the application. A — the primary user interface,
B — the image that has been submitted for analysis, C — the result of the classification

DISCUSSION

Vision systems supported by artificial intelligence tools are becoming increasingly
popular in agricultural applications. Convolutional networks are often used in such solu-
tions because of their ability to extract accurate features automatically. They enable accu-
rate classification of various objects, such as pests. Qureshi et al. [2024] proposed a system
based on CNN to classify the severity levels of maize stalk rot. The system recognised six
classes of stalk rot with an accuracy of 83.58%.

Models based on convolutional networks can work accurately even on devices that do
not have large memory resources, such as smartphones. This makes it easy for farmers to
use applications that use CNNs. Such applications include the detection and identification
of pests and plant diseases. Mallick et al. [2023] presented a CNN model based on Mo-
bileNetV2 architecture for detection of six different types of mung bean diseases and four
types of pests. They optimised the model and reduced its size from 20.6 MB to 6.02 MB,
achieving 93.65% accuracy for the test dataset. This enabled the model to be implemented
as a native application on the Android platform. Berka et al. [2023] developed a CNN-based
application called CactiViT. The application used a visual image transformer to diagnose
cactus cochineal with an average accuracy of 88.34%. The CactiViT mobile application
allows the assessment of the health status of cacti based on images captured by the user.
Lanjewar and Parab [2024] tested a customised CNN and four pre-trained deep CNNs to
recognise citrus leaf diseases (black spot, melanose, canker and greening). The high-
-accurate (accuracy of 98%, and F1-score of 99%) optimised CNN with 15 layers and
a size of 1.68 MB was deployed to the platform as a service cloud and released to the users
as a link. Similar research was carried out by Peyal et al. [2023] for diseases of tomato and
cotton crops. Their custom CNN model outperformed VGG-16, VGG-19, Inception-V3,
MobileNet and MobileNetV2, achieving an accuracy of 97.36% and an F1-score of 97%.
The model was implemented as an Android application that can detect 12 different dis-
eases in an average time of 4.84 ms.
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It is evident that both transfer learning-based CNNs (e.g., MobileNet, ResNet) and
custom CNNs (e.g., the one under discussion) are effective. As demonstrated in this re-
search, the technology is employed in the field of precision agriculture for the purpose of
detecting plant diseases and pests. Nevertheless, the decision to develop and optimise
a custom CNN classifier constitutes a significant methodological contribution of this
study. Whilst transfer learning offers rapid deployment, the architecture presented here
focuses on systematic hyperparameter tuning (including optimisers, filter numbers and
kernel sizes) to achieve optimal performance for the specific task of detecting corn leaf
worm infestations. Additionally, the architecture presented in this study was selected
based on preliminary research, which involved training various CNN architectures. Each
of the architectures examined was associated with a distinct number of adjustable param-
eters. Despite the network with a considerably reduced number of parameters (No. 2 in
table 1) attaining only marginally lower levels of accuracy, the remaining metrics also
exhibited diminished values (precision = 0.93, recall = 0.94, and F1-score = 0.94). In cir-
cumstances where the implementation of the model is constrained by limited resources, it
is recommended to select that model without a substantial compromise in the quality of
classification.

The rigorous approach presented in this study demonstrates that it is possible to
achieve state-of-the-art detection accuracy (up to 95% across all key metrics: accuracy,
precision, recall, specificity, and F1-score) using a lighter, less complex model dedicated
solely to this single-pest problem. This is a critical factor for practical application. Typi-
cally, custom models are smaller in size and computationally more efficient, enabling their
seamless implementation in user-friendly mobile applications for direct use in the field.
Consequently, the high accuracy, when combined with the low computational overhead
of the custom architecture, yields a significant practical advantage, namely the ability to
execute real-time, highly localized detection. This capacity enables agricultural practition-
ers to transition from conventional, prophylactic spraying to precision chemical applica-
tion in affected areas, thereby optimising the utilisation of plant protection products from
both economic (cost reduction) and environmental (reduced chemical runoff) perspec-
tives.

CONCLUSIONS

In the field of agriculture, infestations of plant life have been demonstrated to result
in considerable economic losses. The rapid and accurate detection of diseases and pest
attacks is instrumental in optimising agrotechnical operations, thereby minimising pro-
duction costs and environmental pollution. The issue is especially pronounced in the con-
text of large-scale crop cultivation, where effective monitoring and management of plant
health become particularly challenging. In such cases, the combination of modern vision
systems with machine learning algorithms has been proven to be a highly effective solu-
tion. Such systems can be installed, for example, on drones and thus automate the crop
inspection process. The findings of our research suggest that custom CNN classifiers can
be utilised in such systems. The identification of the optimal set of hyperparameters for
the model is a prerequisite for the creation of an accurate classifier. In the case of the
proposed model, the levels of accuracy, precision, recall, specificity, and F1-score were
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determined to be at the 95% level. Moreover, the findings of this study demonstrated that
the optimisation of the hyperparameters of model and the training process exerted a sub-
stantial influence on the model’s accuracy. Depending on these hyperparameters, we ob-
tained models ranging from highly inaccurate to those that may have practical applica-
tions. The limitation of this work is that the model has been trained on data concerning
only one type of pest. Consequently, the model is capable of accurately identifying leaf
damage caused exclusively by corn leaf worm infestations. It is important to note that
images showing similar damage caused by other factors, such as hail or other pests, may
be classified by the model as corn leaf worm damage. The results presented herein refer
to preliminary research that focused on the possibility of using custom CNN structures to
recognise plant infestations. Future research will entail the development of models capable
of recognising various diseases and pest attacks. In addition to employing convolutional
networks for this purpose, it is also planned to utilise quantum tensors, which will facilitate
more accurate image analysis, including fine details and interpretation.
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