Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 75 No. 2 (2020)

Articles

Regulation of mitochondrial manganese superoxide dismutase (MnSOD) gene expression in cereals by copper and manganese excess

DOI: https://doi.org/10.24326/as.2020.2.5
Submitted: November 25, 2019
Published: 2020-07-17

Abstract

Within many different cytotoxic activities of heavy metals in plant cells, one of the most important is connected with reactive oxygen species (ROS) generation. Mechanism of plant cell defense against reactive oxygen species and free radicals has a comprehensive character. The aim of presented paper is characterization of changes in mitochondrial manganese superoxide dismutase (MnSOD) gene transcript level that occurred in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) seedlings during copper and manganese treatment. Our results show down-regulation of MnSOD expression in most cases after the oxidative burst evoked by copper excess. Manganese treatment, on the other hand, caused differential reaction of tested material indicating the substantial impact of cultivar genetic background in molecular response to the same stress-inducing conditions.

References

  1. Aust S.D., Marehouse C.E., Thomas C.E., 1985. Role of metals in oxygen radical reactions. J. Free Radi. Biol. Med. 1, 3–25.
  2. Baek K.H., Skinner D.Z., 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 165, 1221–1227. https://doi.org/10.1016/S0168-9452(03)00329-7
  3. Bhattacharjee S., 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. India 89(7), 1113–1121.
  4. Burton R.A., Shirley N.J., King B.J., Harvey A.J., Fincher G.B., 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol., 134, 224–236. https://doi.org/10.1104/pp.103.032904
  5. Chakraborty U., Pradhan B., 2012. Drought stress–induced oxidative stress and antioxidative re-sponses in four wheat (Triticum aestivum L.) varieties. Arch. Agron. Soil Sci. 58(6), 617–630. https://doi.org/10.1080/03650340.2010.533660
  6. Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., Hölzer R., Feller U., 2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot. 52, 253–266. https://doi.org/10.1016/j.envexpbot.2004.02.004
  7. Garnier L., Simon-Plas F., Thuleau P., Agnel J.P., Blein J.P., Ranjeva R., Montillet J.L., 2006. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 29, 1956–1969. https://doi.org/10.1111/j.1365–3040.2006.01571.x
  8. Gill S.S., Anjum N.A., Gill R., Yadav S., Hassanuzzaman M., Fujita M., Mishra P., Sabat S.C., Tuteja N., 2015. Superoxide dismutase – mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 22, 10375–10394. https://doi.org/10.1007/s11356-015-4532-5
  9. Harb A., Awad D., Samarah N., 2015. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. J. Plant Interact. 10(1), 109–116. https://doi.org/10.1080/17429145.2015.1033023
  10. Kacienė G., Juknys R., Januškaitienė I., 2017. The role of oxidative stress in spring barley cross-adaptation to different heavy metals Arch. Agron. Soil Sci. 63(8), 1037–1048. https://doi.org/10.1080/03650340.2016.1256474
  11. Karimi J., Mohsenzadeh S., 2017. Expression of some genes in response to cadmium stress in Triticum aestivum. Int. Lett. Nat. Sci. 63, 10–17.
  12. Kobayashi F., Takumi S., Kume S., Ishibashi M., Ohno R., Murai K., Nakamura C., 2005.
  13. Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J. Exp. Bot. 56(413), 887–895. https://doi.org/10.1093/jxb/eri081
  14. Li G., Peng X., Xuan H., Wei L., Yang Y., Guo T., Kang G., 2013. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions, J. Proteome Res. 12(11), 4846–4861. https://doi.org/10.1021/pr4008283
  15. Li X., Ma H., Jia P., Wang J., Jia L., Zhang T., Yang Y., Chen H., Wei X., 2012a. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol. Environ. Saf. 86, 47–53. https://doi.org/10.1016/j.ecoenv.2012.09.010
  16. Li H., Luo H., Li D., Hu T., Fu J., 2012b. Antioxidant enzyme activity and gene expression in re-sponse to lead stress in perennial ryegrass. J. Am. Soc. Hortic. Sci. 137(2), 80–85. https://doi.org/10.21273/JASHS.137.2.80
  17. Livak, K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262
  18. Luo H., Li H., Zhang X., Fu J., 2011. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 20(4), 770–778. https://doi.org/10.1007/s10646-011-0628-y
  19. Mahmood T., Islam K.R., 2006. Response of rice seedlings to copper toxicity and acidity. J. Plant Nutr. 29, 943–957. https://doi.org/10.1080/01904160600651704
  20. Miller A.F., 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586(5), 585–595. https://doi.org/10.1016/S1360-1385(02)02312-9
  21. Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405–410.
  22. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M., 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
  23. Olteanu Z., Truta E., Oprica L., Zamfirache M.M., Rosu C.M., Vochita G., 2013. Copper-induced changes in antioxidative response and soluble protein level in Triticum aestivum cv. Beti seed-lings. Rom. Agric. Res. 30, 2012–2190.
  24. Rao A., Ahmad S.D., Sabir S.M., Awan S.I., Shah A.H., Abbas S.R., Chaudhary A., 2013. Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L.). Am. J. Plant Sci. 4(6A), 69–76. https://doi.org/10.4236/ajps.2013.46A010
  25. Sgherri C., Quartacci M.F., Navari–Izzo F., 2007. Early production of activated oxygen species in root apoplast of wheat following copper excess. J. Plant Physiol. 164, 1152–1160. https://doi.org/10.1016/j.jplph.2006.05.020
  26. Sheng H., Zeng J., Yan F., Wang X., Wang Y., Kang H., Zhou Y., 2015. Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in Polish wheat (Triticum polonicum L.). Acta Physiol. Plant. 37(2), 32. https://doi.org/10.1007/s11738-015-1783-1
  27. Sheoran S., Thakur V., Narwal S., Turan R., Mamrutha H.M., Singh V., Tiwari V., Sharma I., 2015. Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl. Biochem. Biotechnol. 177(6), 1282–1298. https://doi.org/10.1007/s12010-015-1813-x
  28. Singh D., Nath K., Sharma Y.K., 2007. Response of wheat seed germination and seedling growth under copper stress. J. Environ. Biol. 28(2), 409–414.
  29. Tamás L., Šimonovičová M., Huttová J., Mistrík I., 2004. Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ. Exp. Bot. 51, 281–288. https://doi.org/10.1016/j.envexpbot.2003.11.007
  30. Yuan J.S., Reed A., Chen F., Stewart C.N., 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7, Article number: 85. https://doi.org/10.1186/1471-2105-7-85

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.