Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 76 No. 4 (2021)

Articles

A fast and effective protocol for obtaining genetically diverse stevia (Stevia rebaudiana Bertoni) regenerants through indirect organogenesis

DOI: https://doi.org/10.24326/as.2021.4.4
Submitted: November 2, 2021
Published: 2021-12-30

Abstract

Plant regeneration through indirect organogenesis allows obtaining genetic variability that can be used in the creation of new cultivars. The study presents a fast and effective protocol of one-step preparation of stevia (Stevia rebaudiana Bertoni) regenerants. To obtain callus tissue and shoot regeneration, leaves and nodal segments were used as primary explants, which were placed on MS (Murashige and Skoog) medium supplemented with plant growth regulators (PGRs):
NAA (1-naphthaleneacetic acid – 2.0 mg·dm–3, BA (6-benzylaminopurine – 4.0 mg·dm–3),
2,4‑D (2,4-dichlorophenoxyacetic – 2.0 mg·dm–3). Callus tissue was formed on both types of explants, however, only those derived from nodal segments were proliferating. An average of 3.92 shoots per explant were obtained from leaf explants on the applied medium after 6 weeks of culture. The analysis of the morphogenetic capacity of the obtained regenerants was carried out on MS medium supplemented with PGRs – kinetin (0.25 mg·dm–3), BA (0.5 mg·dm–3). The evaluation of the mean number of shoots, mean shoot length (cm), and the mean number of nodes per shoot indicated phenotypic variability of regenerants. The use of RAPD (randomly amplified polymorphic DNA) markers confirmed the differences also at the DNA level. The proposed one-step indirect organogenesis regeneration protocol induced somaclonal variation of Stevia rebaudiana Bertoni and the obtained regenerants, after selection, could be used in the breeding of this species.

References

  1. Al-Taweel S.K., Azzam C.R., Khaled K.A., Abdel-Aziz R.M., 2021. Improvement of stevia (Stevia rebaudiana Bertoni) and steviol glycoside through traditional breeding and bio-technological approaches. SABRAO J. Breed. Genet. 53(1), 88–111.
  2. Asthana P., Jaiswal V.S., Jaiswal U., 2011. Micropropagation of Sapindustrifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Phys-iol. Plant. 33, 1821–1829. https://doi.org/10.1007/s11738-011-0721-0
  3. Bairu M.W., Aremu A.O., Van Staden J., 2011. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul. 63, 147–173. https://doi.org/10.1007/s10725-010-9554-x
  4. Cao X., Hammerschlag F.A., 2000. Improved shoot organogenesis from leaf explants of high-bush blueberry. HortScience 35(5), 945–947. https://doi.org/10.21273/HORTSCI.35.5.945
  5. Chacón-Morales P., Amaro-Luis J.M., Bahsas A., 2013. Isolation and characterization of (+)-mellein, the first isocoumarin reported in Stevia genus. Av. en Quim. 8, 145–151.
  6. Chester K., Tamboli E.T., Parveen R., Ahmad S., 2013. Genetic and metabolic diversity in Stevia rebaudiana using RAPD and HPTLC analysis. Pharm. Biol. 51, 771–777. https://doi.org/10.3109/13880209.2013.765898
  7. Doliński R., Jabłońska E., 2015. Mikrorozmnażanie stewii (Stevia rebaudiana Bert.) z eksplantatów węzłowych izolowanych z roślin wytworzonych in vitro. Agron. Sci. 70(4), 13–24.
  8. Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15.
  9. Dyduch-Siemińska M., Najda A., Gawroński J., Balant S., Świca K., Żaba A., 2020. Stevia rebaudiana Bertoni, a source of high-potency natural sweetener-biochemical and genetic characterization. Molecules 25(4), 767. https://doi.org/10.3390/molecules25040767
  10. El-Zaidy M., Zayed M., Alharbi S., Doaigey A., Al Sahli A., Ammar R., 2014. Micropropaga-tion of seven Stevia rebaudiana Bert. genotypes via adult leaf explants. J. Pure Appl. Mi-crobiol. 8(2),1289–1298.
  11. Esmaeili F., Kahrizi D., Mansouri M., Yari K., Kazemi N., Ghaheri M., 2016. Cell dedifferentiation in Stevia rebauiana as a pharmaceutical and medicinal plant. J. Rep. Pharm. Sci. 5, 12–17.
  12. Ferrazzano G.F., Cantile T., Alcidi B., Coda M., Ingenito A., Zarrelli A., Di Fabio G., Pollio A., 2016. Is Stevia rebaudiana Bertoni a non cariogenic sweetener?. Molecules 21(1), 1–12. https://doi.org/10.3390/molecules21010038
  13. Gantait S., Das A., Banerjee J., 2018. Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia. Sugar Tech. 20, 1–9. https://doi.org/10.1007/s12355-017-0563-1
  14. Gantait S., Das A., Mandal N., 2015. Stevia: A comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech. 17, 95–106. https://doi.org/10.1007/s12355-014-0316-3
  15. Grafi G., Barak S., 2014. Stress induces cell dedifferentiation in plants. Biochim. Biophys. Acta. 1849, 378–384. https://doi.org/10.1016/j.bbagrm.2014.07.015
  16. Gunasena M.D.K.M., Senarath W.T.P.S.K., 2019. In vitro plant regeneration of Stevia rebaudiana through indirect organogenesis. Int. J. Bot. Stud. 4(4), 199–203.
  17. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4, 9.
  18. Hassanen S.A., Khalil R.M.A., 2013. Biotechnological studies for improving of stevia (Stevia rebaudiana Bertoni) in vitro plantlets. Middle East J. Sci. Res. 14 (1), 93–106. https://doi.org/10.5829/idosi.mejsr.2013.14.1.1948
  19. Heinz D.J., Mee G.W.P., 1971. Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am. J. Bot. 58, 257–262. https://doi.org/10.1002/j.1537-2197.1971.tb09971.x
  20. Jaccard P., 1908. Nouvellesrechearches sur la distribution locale. Bull. Soc. Vaudoise Sci. Nat. 44, 223–270.
  21. Jain S.M., 2001. Tissue culture-derived variation in crop improvement. Euphytica 118, 153–166. https://doi.org/10.1023/A:1004124519479
  22. Janarthanam B., Gopalakrishnan M., Lakshmi Sai G., Sekar T., 2009. Plant regeneration from leaf derived callus of Stevia rebaudiana Bertoni. Plant Tissue Cult. Biotech. 19(2), 133–141. https://doi.org/10.3329/ptcb.v19i2.5430
  23. Javed R., Yucesan B., Zia M., Ekrem G., 2018. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech. 20(2), 194–201. https://doi.org/10.1007/s12355-017-0539-1
  24. Khan A., Jayanthi M., Gantasala N.P., Bhooshan N., Rao U., 2016. A rapid and efficient protocol for in vitro multiplication of genetically uniform Stevia rebaudiana (Bertoni). Indian J. Exp. Biol. 54, 477–481.
  25. Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhari M., Sadh R.K., 2016. Somaclonal variations and their applications in horticultural crops improvement. Biotech. 6, 1–18. https://doi.org/10.1007/s13205-016-0389-7
  26. Majumder S., Rahman S.D., 2016. Micropropagation of Stevia rebaudiana Bertoni through direct and indirect organogenesis. J. Innov. Pharmac. Biol. Sci. 13(3), 47–56.
  27. Masri M.I., Amein M.M.M., Ranya M., Aziz A., Sayed D.O., 2019. Callogenesis and plant regeneration via in vitro culture of stevia rebaudiana explants. Egypt. J. Plant Breed. 23(1), 65–76.
  28. Modi A.R., Patil G., Kumar N., Singh A.S., Subhash N.A., 2012. Simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fideli-ty of in vitro raised plants through RAPD. Sugar Tech. 14, 391–397. https://doi.org/10.1007/s12355-012-0169-6
  29. Moktaduzzaman M., Mahbubur-Rahman S.M., 2009. Regeneration of Stevia rebaudiana and analysis of somaclonal variation by RAPD. Biotechnology 8(4), 449–455. https://doi.org/10.3923/biotech.2009.449.455
  30. Mubarak M.H., Belal A.H., EL-Geddawy I.H., Eman I., Sarag E.L., Nasr M.I., 2008. Micropropagation of Stevia rebaudiana in vitro. Meeting the challenges of sugar crops and integrated industries in developing countries. Al Arish, Egypt, 293–298.
  31. Murashige T., Skoog F.A., 1962. Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497.
  32. Patel R. M., Shah R.R., 2009. Regeneration of stevia plant through callus culture. Indian. J. Pharm. Sci. 71(1), 46–50. https://doi.org/ 10.4103/0250-474X.51954
  33. Predieri S., 2001. Mutation induction and tissue culture in improving fruits. Plant Cell. Tissue Organ Cult. 64, 185–210. http://dx.doi.org/10.1023/A:1010623203554
  34. Preethi D., Sridhar T.M., Naidu C.V., 2011. Efficient protocol for indirect shoot regeneration from leaf explants of Stevia rebaudiana (Bert.) – an important calorie free biosweetner. J. Phytol. 3(5), 56–60.
  35. Razak U.N.A.A., Ong C.B., Yu T.S., Lau L.K., 2014. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Braz. Arch. Biol. Technol. 1, 23–28. https://doi.org/10.1590/S1516-89132014000100004
  36. Samuel P., Ayoob K.T., Magnuson B.A., Wölwer-Rieck U., Jeppesen P.B., Rogers P.J., Row-land I., Mathews R., 2018. Stevia leaf to stevia sweetener: exploring its science, benefits, and future potential. J. Nutr. 148, 1186S–1205S. https://doi.org/10.1093/jn/nxy102
  37. Sarmah D., Sutradhar M., Singh B.K., 2017. Somaclonal variation and its’ application in ornamentals plants. Int. J. Pure Appl. Biosci. 5, 396–406. https://doi.org/10.18782/2320-7051.2762
  38. Shah S.H., Ali S., Jan S.A., Din J., Ali G.M., 2015. Callus induction, in vitro shoot regeneration and hairy root formation by the assessment of various plant growth regulators in tomato (Solanumlycopersicum Mill.). J. Anim. Plant Sci. 25, 528–538.
  39. Sharma N., Gauchan D.P., Dhakal A., Luitel A., Shakya S., Shakya R., 2015. Establishment of regenerative callus, cell suspension system and molecular characterization of Stevia rebaudiana Bertoni for the production of stevioside in in vitro. Int. J. Res. Appl. Sci. Eng. Technol. 3, 133–144.
  40. Sharma N., Kaur R., Era V., 2016. Potential of RAPD and ISSR markers for assessing genetic diversity among Stevia rebaudiana Bertoni accessions. Indian J. Biotechnol. 15, 95–100.
  41. Sikdar S.U., Zobayer N., Azim F., Ashrafuzzaman M., Prodhan S.H., 2012. An efficient callus initiation and direct regeneration of Stevia rebaudiana. Afr. 11(45), 10381–10387. https://doi.org/10.5897/AJB11.2363
  42. Singh M., Saharan V., Rajpurohit D., Sen Y., Joshi A., Sharma A., 2017. Thidiazuron induced direct shoot organogenesis in Stevia rebaudiana and assessment of clonal fidelity of regenerated plants by RAPD and ISSR. Int. J. Curr. Microbiol. Appl. Sci. 6, 1690–1702. https://doi.org/10.20546/ijcmas.2017.608.203D.
  43. Skirvin R.M., Norton M., McPheeters K.D., 1993. Somaclonal variation: has it proved useful for plant improvement. Acta Hortic. 336, 333–340.
  44. Soliman H.I.A., Metwali E.M.R., Almaghrabi O.A.H., 2014. Micropropagation of Stevia rebaudiana Betroni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol. 31, 249–256. https://doi.org/10.5511/plantbiotechnology.14.0707a
  45. Taleie N., Hamidoghli S., Hamidoghli Y., 2012. In vitro plantlet propagation of Stevia
  46. rebaudiana Bertoni. South-West. J. Hortic. Biol. Environ. 3(1), 99–108. https://doi.org/10.20546/ijcmas.2017.607.122
  47. Taware A., Mukadam S.S., Chavan A., Taware S.D., Ambedkar B., 2010. Comparative studies of in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni). Int. J. In-tegr. Biol. 9, 10–15.
  48. Thiyagarajan M., Venkatachalam P., 2012. Evaluation of the genetic fidelity of in vitro propagated natural sweetener plant (Stevia rebaudiana Bert.) using DNA-based markers. Plant Cell Biotechnol. Mol. Biol. 13, 93–98.
  49. Thiyagarajan M., Venkatachalam P., 2015. Assessment of genetic and biochemical diversity of Stevia rebaudiana Bertoni by DNA fingerprinting and HPLC analysis. Ann. Phytomedicine. 4, 79–85.

Downloads

Download data is not yet available.

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.