Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 78 No. 1 (2023)

Articles

Application of the life cycle assessment method to the estimation of the potential toxicity of chemical protection of winter wheat in different tillage systems

DOI: https://doi.org/10.24326/as.2023.4946
Submitted: October 4, 2022
Published: 2023-06-09

Abstract

The study aimed to assess and compare the potential effects of the use of plant protection products, based on their emissivity and toxicity, in winter wheat in different soil tillage systems. Material for the analyses consisted of data on the chemical protection of winter wheat in conventional tillage, reduced tillage and direct sowing, collected from 15 selected farms in the Wielkopolskie voivodeship, in the years 2015–2017. The study was carried out by the life cycle assessment (LCA) methodology. Amounts of environmental emissions of active substances were determined using the PestLCI 2.08 model. Based on estimated emissions, the values ​​of the freshwater ecotoxicity potential (FETP) in chemical protection of winter wheat in three tillage systems were calculated using the USEtox 2.02 model. The study showed that in the analyzed soil tillage systems, the largest stream of environmental emission of active substances was constituted by the mass of active substances available for leaching and surface runoff, followed by emissions to air and the mass of substances permeating into groundwater. The highest value of FETP was noted in direct sowing (10365.7 CTUe·ha–1). A significantly lower value of this indicator was found in the conventional and reduced tillage (2512.4 CTUe·ha–1 and 2264.6 CTUe·ha–1, respectively).

References

  1. Alletto L., Coquet Y., Benoit P., Heddadj D., Barriuso E., 2010. Tillage management effects on pesticide fate in soils. A review. Agron. Sustain. Dev. 30, 367–400. https://doi.org/10.1051/agro/2009018 DOI: https://doi.org/10.1051/agro/2009018
  2. Bernardes M.F.F., Pazin M., Pereira L.C., Dorta D.J., 2015. Impact of pesticides on environmental and human health. W: A.C. Andreazza, G. Scola (red.), Toxicology studies-cells, drugs and environment. InTech, Rijeka, Croatia, 195–233. https://doi.org/10.5772/59710 DOI: https://doi.org/10.5772/59710
  3. Berthoud A., Maupu P., Huet C., Poupart A., 2011. Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural prac-tices databases and USEtox model. Int. J. Life Cycle Assess. 16, 841–847. https://doi.org/10.1007/s11367-011-0321-7 DOI: https://doi.org/10.1007/s11367-011-0321-7
  4. Carvalho F., 2017. Pesticides, environment, and food safety. Food Energy Secur. 6(2), 48–60. https://doi.org/10.1002/fes3.108 DOI: https://doi.org/10.1002/fes3.108
  5. Cudzik A., Białczyk W., Czarnecki J., Brennensthul M., Kaus A., 2012. Ocena systemów uprawy w aspekcie zużycia paliwa, plonowania roślin i właściwości gleby. Inż. Rol. 2(2), 17–27.
  6. Dijkman T.J., Birkved M., Hauschild M., 2012. PestLCI 2.0: a second generation model for esti-mating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 17, 973–986. https://doi.org/10.1007/s11367-012-0439-2 DOI: https://doi.org/10.1007/s11367-012-0439-2
  7. EU Pesticides database, 2021. https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en [dostęp: 21.08.2021].
  8. Fan J., Liu C., Xie J., Han L., Zhang C., Guo D., Niu J., Jin H., McConkey B., 2022. Life cycle assessment on agricultural production: a mini review on methodology, application, and chal-lenges. Int. J. Environ. Res. Public Health 19(16), 9817. https://doi.org/10.3390/ijerph19169817 DOI: https://doi.org/10.3390/ijerph19169817
  9. Feledyn-Szewczyk B., Berbeć A.K., Radzikowski P., 2017. Rola dżdżownic w kształtowaniu jako-ści gleb oraz wpływ różnych zabiegów agrotechnicznych na ich występowanie. Stud. Rap. IUNG-PIB, 54(8), 57–71. https://doi.org/10.26114/sir.iung.2017.54.04
  10. Geiger F., Bengtsson J., Berendse F., Weisser W.W., Emmerson M., Morales M.B., Ceryngier P., Liira J., Tscharntke T., Winqvist C., Eggers S., Bommarco R., Pärt T., Bretagnolle V., Plante-genest M., Clement L.W., Dennis C., Palmer C., Onate J.J., Guerrero I., Hawro V., Aavik T., Thies C., Flohre A., Hänke S., Fischer C., Goedhart P.W., Inchausti P., 2010. Persistent nega-tive effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105. https://doi.org/10.1016/j.baae.2009.12.001 DOI: https://doi.org/10.1016/j.baae.2009.12.001
  11. Giemza-Mikoda M., Zimny L., Wacławowicz R., 2012. Wpływ systemów uprawy na zachwaszcze-nie jęczmienia jarego. Prog. Plant Prot./Post. Ochr. Rośl. 52(2), 283–286.
  12. Grygiel K., Sadowski J., Snopczyński T., Wysocki A., 2012. Pozostałości herbicydów w płodach rolnych i glebie. J. Ecol. Health 16(4), 159–163.
  13. Grzesik K., 2006. Wprowadzenie do oceny cyklu życia (LCA) – nowej techniki w ochronie środo-wiska. Inż. Środ. 11(1), 111–113.
  14. Hauschild M.Z., McKone T.E., van de Meent D., Huijbregts M., Margni M., Rosenbaum R., Jolliet O., Fantke P., 2016. USEtox® 2.02. The UNEP/SETAC scientific consensus model for char-acterizing human and ecotoxicological impacts of chemical emissions in life cycle impact as-sessment. https://usetox.org/model/download/usetox2.0 [dostęp: 21.08.2021].
  15. Henderson A.D., Hauschild M.Z., van de Meent D., Huijbregts M.A.J. , Larsen H.F., Margni M., McKone T.E., Payet J., Rosenbaum R.K., Jolliet O., 2011. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 701–709. https://doi.org/10.1007/s11367011-0294-6 DOI: https://doi.org/10.1007/s11367-011-0294-6
  16. Holka M., Bieńkowski J., 2019. Chemical protection of winter wheat and its environmental impact under conditions of different soil tillage systems. W: D. Kovačević, Book of Proceedings, X International Scientific Agriculture Symposium “Agrosym 2019”, Jahorina, 3–6.10.2019, 929–934.
  17. Holka M., Bieńkowski J., 2020. Assessment of toxicity impacts of chemical protection of winter wheat, sugar beet and winter rape on aquatic ecosystems and humans. Zemdirbyste-Agric. 107(2), 131–138. https://doi.org/10.13080/z-a.2020.107.017 DOI: https://doi.org/10.13080/z-a.2020.107.017
  18. Hou Q., Guozhu M., Zhao L., Du H., Zuo J., 2015. Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int. J. Life Cycle Assess. 20, 541–555. https://doi.org/10.1007/s11367-015-0846-2 DOI: https://doi.org/10.1007/s11367-015-0846-2
  19. Jaskulski D., Kotwica K., Jaskulska J., Piekarczyk M., Osiński G., Pochylski B., 2012. Elementy współczesnych systemów uprawy roli i roślin – skutki produkcyjne oraz środowiskowe. Fragm. Agron. 29(3), 61–70.
  20. Kiryluk A., 2016. Zmiany w technologiach uprawy roli i roślin w województwie podlaskim i ich wpływ na środowisko przyrodnicze. Ekonomia i Środowisko 2(57), 287–301.
  21. Korbas M., Horoszkiewicz-Janka J., Jajor E., 2008. Uproszczone systemy uprawy a występowanie sprawców chorób. Prog. Plant Prot./Post. Ochr. Rośl. 48(4), 1431–1438.
  22. Kot-Wasik A., Dąbrowska D., Namieśnik J., 2003. Degradacja związków organicznych w środo-wisku. W: J. Namieśnik, W. Chrzanowski, P. Szpinek (red.), Nowe horyzonty i wyzwania w analityce i monitoringu środowiskowym. Centrum Doskonałości Analityki i Monitoringu Środowiskowego, Gdańsk, 700–722.
  23. Lovarelli D., Garcia L.R., Sánchez-Girón V., Bacenetti J., 2020. Barley production in Spain and Italy: Environmental comparison between different cultivation practices, Sci. Total Environ. 707, 135982. https://doi.org/10.1016/j.scitotenv.2019.135982 DOI: https://doi.org/10.1016/j.scitotenv.2019.135982
  24. Mahmood I., Imadi S.R., Shazadi K., Gul A., Hakeem K.R., 2016. Effects of pesticides on envi-ronment. W: K.R. Hakeem, M.S. Akhtar, S.N.A. Abdullah (red.), Plant, soil and microbes. Implications in crop science 1, Springer International Publishing Switzerland, 253–269. https://doi.org/10.1007/978-3-319-27455-3_13 DOI: https://doi.org/10.1007/978-3-319-27455-3_13
  25. Małecka I., Blecharczyk A., Sawinska Z., Piechota T., Waniorek B., 2012. Plonowanie zbóż w zależności od sposobów uprawy roli. Fragm. Agron. 29(1), 114–123.
  26. Małecka-Jankowiak I., Blecharczyk A., Sawinska Z., Piechota T., Waniorek B., 2015. Wpływ następstwa roślin i systemu uprawy roli na zachwaszczenie pszenicy ozimej. Fragm. Agron. 32(3), 54–63.
  27. Małecka I., Blecharczyk A., Sawinska Z., Swędrzyńska D., Piechota T., 2015. Winter wheat yield and soil properties response to long-term non-inversion tillage. J. Agr. Sci. Tech. 17(6), 1571–1584.
  28. Małecka I., Sawinska Z., Blecharczyk, Dytman-Hagedorn M., 2014. Zdrowotność pszenicy ozimej w różnych wariantach uprawy roli. Prog. Plant Prot. 54(2), 246–250. http://dx.doi.org/10.14199/ ppp-2014-039
  29. Pardo G., Cirujeda A., Perea F., Verdu A.M.C., Mas M.T., Urbano J., 2019. Effects of reduced and conventional tillage on weed communities: results of a long-term experiment in Southwestern Spain. Planta Dan. 37. https://doi.org/10.1590/s0100-83582019370100152 DOI: https://doi.org/10.1590/s0100-83582019370100152
  30. Pesticide Properties DataBase, 2021. University of Hertfordshire, http://sitem.herts.ac.uk/aeru/ ppdb/en/ [dostęp: 21.08.2021].
  31. Piskier T., Sekutowski T.R., 2014. Środowiskowe i produkcyjne skutki stosowania bezorkowych systemów uprawy roli. Stud. Rap. IUNG-PIB 36(10), 69–89. https://doi.org/10.26114/sir.iung.2014.36.06
  32. PN-EN ISO 14040:2009. Zarządzanie środowiskowe. Ocena cyklu życia. Zasady i struktura. PKN, Warszawa.
  33. PN-EN ISO 14044:2009. Zarządzanie środowiskowe. Ocena cyklu życia. Wymagania i wytyczne. PKN, Warszawa.
  34. Relyea R.A., 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15(2), 618–627. https://doi.org/10.1890/03-5342 DOI: https://doi.org/10.1890/03-5342
  35. Riyaz M., Shah R., Sivasankaran K., 2021. Pesticide residues: impacts on fauna and the environ-ment. W: K.M. Mendes, R.N. de Sousa, K.C. Mielke (red.), Biodegradation technology of or-ganic and inorganic pollutants. InTech, Rijeka, Croatia, https://doi.org/10.5772/intechopen.98379 DOI: https://doi.org/10.5772/intechopen.98379
  36. Rosenbaum R.K., Bachmann T.M., Swirsky Gold L., Huijbregts M.A.J., Jolliet O., Juraske R., Koehler A., Larsen H.F., Macleod M., Margni M., McKone T.E., Payet J., Schuhmacher M., Van de Meent D., Hauschild M.Z., 2008. USEtox-the UNEP-SETAC toxicity model: recom-mended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle im-pact assessment. Int. J. Life Cycle Assess. 13, 532–546. DOI: https://doi.org/10.1007/s11367-008-0038-4
  37. Sánchez-Bayo F., Wyckhuys K.A.G., 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 DOI: https://doi.org/10.1016/j.biocon.2019.01.020
  38. Sekutowski T., Sadowski J., 2009. Wpływ uproszczeń w uprawie roli na dynamikę zanikania herbi-cydów w glebie. Zesz. Probl. Post. Nauk Rol. 543, 157–165.
  39. Swędrzyńska D., Małecka-Jankowiak I., 2017. The impact of tillaging spring barley on selected chemical, microbiological, and enzymatic soil properties. Pol. J. Environ. Stud. 26(1), 303–313. https://doi.org/10.15244/pjoes/64911 DOI: https://doi.org/10.15244/pjoes/64911
  40. Tudi M., Daniel Ruan H., Wang L., Lyu J., Sadler R., Connell D., Chu C., Phung D.T., 2021. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18(3), 1112. https://doi.org/10.3390/ijerph18031112 DOI: https://doi.org/10.3390/ijerph18031112
  41. Xue X., Hawkins T.R., Ingwersen W.W., Smith R.L.,2015. Demonstrating an approach for includ-ing pesticide use in life-cycle assessment: Estimating human and ecosystem toxicity of pesticide use in Midwest corn farming. Int. J. Life Cycle Assess. 20, 1117–1126. https://doi.org/10.1007/s11367-015-0902-y DOI: https://doi.org/10.1007/s11367-015-0902-y
  42. Yang J., Chang Y., Zhang Y., Zhu L., Mao L., Zhang L., Liu X., Jiang H., 2022. Combined repro-ductive effects of imidacloprid, acetochlor and tebuconazole on zebrafish (Danio rerio).
  43. Agriculture 12(12), 1979. https://doi.org/10.3390/agriculture12121979 DOI: https://doi.org/10.3390/agriculture12121979
  44. Żak A., 2016. Środki ochrony roślin a zmiany w środowisku naturalnym i ich wpływ na zdrowie człowieka. Zagad. Ekon. Rol. 346(1), 155–166. https://doi.org/10.30858/zer/83045 DOI: https://doi.org/10.30858/zer/83045

Downloads

Download data is not yet available.

Similar Articles

<< < 30 31 32 33 34 35 36 37 38 39 > >> 

You may also start an advanced similarity search for this article.