Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 70 No. 4 (2015)

Articles

The effects of increasing potassium fertilization on changes in the content of se-lenium and titanium in the soil and eastern galega (Galega orientalis Lam.)

DOI: https://doi.org/10.24326/as.2015.4.8
Submitted: May 9, 2019
Published: 2015-12-18

Abstract

The aim of this study was to estimate changes in the content of selenium and titanium in soil and eastern galega under the influence of growing potassium fertilization and the sampling of the analyzed elements together with the yield of the test plant. A three-year field experiment was conducted on experimental plots belonging to the University of Natural Sciences and Humanities in Siedlce. The study included the following six fertilization objects: control treatment (0); P1; K1; P1K2; P1K3; P1K4 (P1 – 23, K1 – 83, K2 – 124, K3 – 166, K4 – 207.5 kg.ha-1). In each year of the study a test plant was collected three times in the budding stage. After harvesting galega soil samples were collected. Varied potassium fertilization had a significant impact on changes in the content of selenium and titanium in the soil and eastern galega. Most selenium in the soil was determined with the control object, and titanium in the soil fertilized with a dose of potassium 83 kg.ha-1. The use of potassium doses (K3–K4 166–207.5 kg.ha-1) resulted in a significant increase of selenium content in the test plant in relation to the dose of 83 kg.ha-1 (K1). The use of the potassium salt at a dose of K2 (124 kg.ha-1) resulted in a significant reduction in the titanium content in the test plant in comparison to K1 fertilization K1 (83 kg.ha-1). Eastern galega harvested at successive dates and subsequent years of study contained smaller amounts of selenium and titanium. The content of selenium and titanium in the dry mass of the test plant was below the range limit numbers defining the permissible quantities of elements in the feed. Eastern galega fertilized with the dose of phosphorus 23 kg.ha-1 and potassium 166 kg.ha-1 absorbed the largest amounts of selenium and titanium with the yield.

References

Anke M., 1987. Kolloquien des Instituts für Pflanzenernährung. Jena 2, 110–111.

Bitterli C., Baňuelos G.S., Schulin R., 2010. Use of transfer factors to charakterize uptake of selenium by plants. J. Geochem. Explor. 107, 206–216.

Borowska K., Grabowska M., Kozik K., 2013. Selenium content and enzymatic activity of soil after applying farmard manure and mineral nitrogen. Environ. Prot. Nat. Resour. 24, 2 (56), 5–10, DOI: 10.2478/OSZN-2013-0023.

Borowska K., Koper J., 2011. Dynamics of changes of selenium content in soil and red clover (Trifolium pratense L.) affected by long-term organic fertilization on the background of selected soil oxidoreductases. Pol. J. Environ. Stud. 20 (6), 1403–1410.

Borowska K., Koper J., Kozik K., Rutkowska A., 2014. Effect of slurry fertilization on the selenium content and catalase activity in lessive soil. J. Elementol. 19 (3), 649–660, DOI: 10.5601/jelem.2014.19.3.705.

Gorlach E., 1991. Zawartość pierwiastków śladowych w roślinach pastewnych jako miernik ich wartości. Zesz. Nauk. AR w Krakowie 262 (34), 13–21.

Gorlach E., Gambuś F., 2000. Potencjalnie toksyczne pierwiastki śladowe w glebach (nadmiar, szkodliwość i przeciwdziałanie). Zesz. Probl. Post. Nauk Roln. 472, 275–296.

Hartikainen H., 2005. Biogeochmistry of selenium and its impact on food chain quality and human health. J. Trace Elementol. Med. Biol. 18, 309–315.

Jamroz D., Buraczewski S., Kamieński J., 2001. Żywienie zwierząt i paszoznawstwo. Cz. 1. Fizjo-logiczne i biochemiczne podstawy żywienia zwierząt. Wyd. Nauk. PWN, Warszawa.

Kabata-Pendias A., 1998. Geochemistry of selenium. J. Environ. Pathol. Toxicol. Oncol. 17(3–4), 1–5.

Kabata-Pendias A., 2011. Trace elements in soils and plants. 4th ed. CRC Press. Taylor & Francis Group. Boca Raton.

Lemly A., D., 1993. uidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ. Monit. Assess. 28, 83–100.

Ordak M., Matsumoto H., Nasierowski T., Bulska E., Maj-Żurawska M., Wojnar M., 2013. Role of selenium in pathophysiology of alcohol dependence – indications for supplementation. J. Elementol. 18(4), 757–767.

Patorczyk-Pytlik B., Kulczycki G., 2009. Content of selenium in arable soils near Wroclaw. J. Elementol. 14 (4), 755–762.

Symanowicz B., Kalembasa S., 2010. Wpływ nawożenia fosforowo-potasowego na plon i zawar-tość makroelementów w biomasie rutwicy wschodniej (Galega orientalis Lam.). Fragm. Agron. 27 (1), 177–185.

Symanowicz B., Kalembasa S., Jaremko D., Niedbała M., 2013. Polskie odpadowe węgle brunatne – potencjalne źródło składników pokarmowych roślin. Annales UMCS, sec. E, Agricultura 68(4), 21–27.

Szákova J., Tremlová J., Pegová K., Najmanova J., Tlustoš P., 2015. Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environ. Monit. Assess. 187, 358–369, DOI: 10.1007?s10661-015-4588-1.

Szczepaniak W., 2005. Metody instrumentalne w analizie chemicznej. PWN, Warszawa, 165–168.

Underwood S.J., 1971. Żywienie mineralne zwierząt. PWRiL, Warszawa.

Winkel L.H.E., Johnson C.A., Lenz M., Grundl T., Leupin O. X., Amini M., Charlet L., 2012. Environmental selenium research from microscopic processes to golbal understanding. Environ. Sci. Technol. 46 (2), 571–579.

Downloads

Download data is not yet available.

Similar Articles

<< < 35 36 37 38 39 40 41 42 43 44 > >> 

You may also start an advanced similarity search for this article.