Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 3 (2023)

Artykuły

Produkcyjność soi uprawianej metodą proekologiczną i konwencjonalną w zależności od rozstawy rzędów

DOI: https://doi.org/10.24326/as.2023.5155
Przesłane: 19 kwietnia 2023
Opublikowane: 22-01-2024

Abstrakt

Soja (Glycine max (L.) Merr.) jest rośliną bobowatą cenioną m.in. za dużą wartość odżywczą nasion. Odgrywa ważną rolę w płodozmianie, poprawiając żyzność i strukturę gleby. Dlatego kluczowe znaczenie mają badania ukierunkowane na wyznaczenie optymalnych warunków agrotechnicznych dla uzyskania wysokich plonów tej rośliny. Celem przeprowadzonych badań była ocena plonowania dwóch odmian soi wysiewanych w zróżnicowanej rozstawie rzędów w warunkach uprawy metodą proekologiczną i konwencjonalną. Czteroletnie badania polowe udowodniły, że uprawa metodą konwencjonalną oddziaływała korzystniej niż proekologiczną na wielkość plonu nasion, obsadę roślin po wschodach, liczbę strąków z rośliny oraz liczbę i masę nasion z rośliny. W uprawie proekologicznej soja znacznie wyżej zawiązywała strąki. Lepiej plonującą okazała się odmiana Merlin niż Aldana (o 43,4%), u której korzystniej kształtowały się również elementy struktury plonu i łanu, z wyjątkiem masy 1000 nasion. Istotnie większy plon nasion soi uzyskano w rozstawie rzędów 22,5 cm niż 35 cm.

Bibliografia

  1. Adamič S., Leskovšek R., 2021. Soybean (Glycine max (L.) Merr.) growth, yield, and nodulation in the early transition period from conventional tillage to conservation and no-tillage systems. Agronomy 11(12), 2477.https://doi.org/10.3390/agronomy11122477 DOI: https://doi.org/10.3390/agronomy11122477
  2. Adigun J.A., Adeyemi O.R., Daramola O.S., Olorunmaiye P.M., 2020. Response of cowpea to inter-row spacing and weed competition. Agric. Trop. Subtrop. 53(2), 73–79. https://doi.org/10.2478/ats-2020-0008 DOI: https://doi.org/10.2478/ats-2020-0008
  3. Andrade J.F., Edreira J.I.R., Mourtzinis S., Conley S.P., Ciampitti I.A., Dunphy J.E., Gaska J.M., Glewen K., Holshouser D.L., Kandel H.J., Kyveryga P., Lee C.D., Licht M.A., Lindsey L.E., Mc Clure M.A, Naeve S., Nafziger E.D., Orlowski J.M., Ross J., Staton M.J., Grassini P., 2019. Assessing the influence of row spacing on soybean yield using experimental and producer survey data. Field Crops Res. 230, 98–106. https://doi.org/10.1016/j.fcr.2018.10.014 DOI: https://doi.org/10.1016/j.fcr.2018.10.014
  4. Cox W., Hanchar J.J., Cherney J., Sorrells M., 2019. Agronomic comparisons of organic and conventional soybean with recommended and high inputs during the first 4 years of organic management. Agronomy 9(10), 602. https://doi.org/10.3390/agronomy9100602 DOI: https://doi.org/10.3390/agronomy9100602
  5. Daramola O.S., Adeyemi O.R., Adigun J.A., Adejuyigbe C.O., 2019. Row spacing and weed management methods influences growth and yield of soybean (Glycine max (L.) Merr.). Agric. Trop. Subtrop. 52(2), 59–71. https://doi.org/10.2478/ats-2019-0007 DOI: https://doi.org/10.2478/ats-2019-0007
  6. Daramola O.S., Adeyemi O.R., Adigun J.A., Adejuyigbe C.O., 2022. Influence of row spacing and weed control methods on weed population dynamics in soybean (Glycine max L.). Int. J. Pest Manag. 68(1), 43–58. https://doi.org/10.1080/09670874.2020.1795300 DOI: https://doi.org/10.1080/09670874.2020.1795300
  7. Epler M., Staggenborg S., 2008. Soybean yield and yield component response to plant density in narrow row systems. Crop Manag. 7(1), 1–13. https://doi.org/10.1094/CM-2008-0925-01-RS DOI: https://doi.org/10.1094/CM-2008-0925-01-RS
  8. Gawęda D., Haliniarz M., Cierpiała R., Klusek I., 2017. Yield, weed infestation and seed quality of soybean (Glycine max (L.) Merr.) under different tillage systems. J. Agric. Sci. 23(2), 268–275.
  9. Harada K., Kaga A., 2019. Recent genetic research on Japanese soybeans in response to the escalation of food use worldwide. Euphytica 215(4), 70. https://doi.org/10.1007/s10681-019-2396-3 DOI: https://doi.org/10.1007/s10681-019-2396-3
  10. https://rejestrupraw.arimr.gov.pl/# [dostęp: 10.07.2023]
  11. Jańczak-Pieniążek M., Buczek J., Bobrecka-Jamro D., Szpunar-Krok E., Renata Tobiasz-Salach R., Jarecki W., 2021. Morphophysiology, productivity and quality of soybean (Glycine max (L.) Merr.) cv. Merlin in response to row spacing and seeding systems. Agronomy 11(2), 403. https://doi.org/10.3390/agronomy11020403 DOI: https://doi.org/10.3390/agronomy11020403
  12. Karydogianni S., Roussis I., Tsimpukas K., Papastylianou P, Bilalis D., 2019. Comparative technical and economic analysis of organic and conventional soybean production in Greece. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Hortic. 76(1), 79–82. https://doi.org/10.15835/buasvmcn-hort:2019.0005 DOI: https://doi.org/10.15835/buasvmcn-hort:2019.0005
  13. Kraska P., Andruszczak S., Gierasimiuk P., Chojnacka S., 2022. Wpływ podpowierzchniowego wnoszenia nawozu mineralnego na plon i jakość nasion soi w warunkach uprawy bezpłużnej. Agron. Sci. 77(4), 109–131. http://doi.org/10.24326/as.2022.4.8 DOI: https://doi.org/10.24326/as.2022.4.8
  14. Kraska P., Andruszczak S., Kwiecińska-Poppe E., Staniak M., Różyło K., Rusecki H., 2020. Supporting crop and different row spacing as factors influencing weed infestation in lentil crop and seed yield under organic farming conditions. Agronomy 10(1), 9. https://doi.org/10.3390/agronomy10010009 DOI: https://doi.org/10.3390/agronomy10010009
  15. Nater I., Osabuohein O.L., Sesugh U.M., Chibuike E.G., Peter O., 2021. Effects of inter-row spacing on growth, seed yield and yield components of Soybean (Glycine max) in Makurdi, Benue State-Nigeria. Int. J. Agric. Vet. Sci. 9(2), 18–24.
  16. Neto H.F.I., Freiria G.H., Costa D.S., Prete C.E.C., Takahashi L.S.A., 2019. Physiological potential and health of soybean seeds obtained from organic and conventional systems. J. Seed Sci. 41(2), 213–223. http://dx.doi.org/10.1590/2317-1545v41n2214881 DOI: https://doi.org/10.1590/2317-1545v41n2214881
  17. Ohyama T., Tewari, K., Ishikawa S., Tanaka K., Kamiyama S., Ono Y., Hatano S., Ohtake N., Sueyoshi K., Hasegawa H., 2017. Role of nitrogen on growth and seed yield of soybean and a new fertilization technique to promote nitrogen fixation and seed yield. W: M. Kasai (red.), Soybean: the basis of yield, biomass and productivity, 153–185. http://dx.doi.org/10.5772/66743 DOI: https://doi.org/10.5772/66743
  18. Panasiewicz K., Faligowska A., Szymańska G., Ratajczak K., Sulewska H., 2023. Optimizing the amount of nitrogen and seed inoculation to improve the quality and yield of soybean grown in the southeastern Baltic region. Agriculture 13(4), 798. https://doi.org/10.3390/agriculture13040798 DOI: https://doi.org/10.3390/agriculture13040798
  19. Ponisio L.C., M’Gonigle L.K., Mace K.C., Palomino J., de Valpine P., Kremen C., 2015. Diversification practices reduce organic to conventional yield gap. Proc. – Royal Soc., Biol. Sci. 282(1799). https://doi.org/10.1098/rspb.2014.1396 DOI: https://doi.org/10.1098/rspb.2014.1396
  20. Praczyk T. (red.), 2017. Instrukcja uprawy soi. Wyd. IOR-PIB w Poznaniu, 4–6.
  21. Saranraj P., Sivasakthivelan P., Al-Tawaha A.R.M., Bright R., Amanullah I., Al-Tawaha A.R., Thangadurai D., Sangeetha J., Rauf A., Khalid S., Al Sultan W., Safari Z.S., Qazizadah A.Z., Zahid N.A., Sirajuddin S.N., 2021. Macronutrient management for the cultivation of Soybean (Glycine max L.): A review. IOP Conf. Ser.:, Earth Environ. Sci. 788. https://doi.org/10.1088/1755-1315/788/1/012055 DOI: https://doi.org/10.1088/1755-1315/788/1/012055
  22. Schrama M., de Haan J.J., Kroonen M., Verstegen H., Van der Putten W.H., 2018. Crop yield gap and stability in organic and conventional farming systems. Agr. Ecosyst. Environ. 256, 123–130. https://doi.org/10.1016/j.agee.2017.12.023 DOI: https://doi.org/10.1016/j.agee.2017.12.023
  23. Seufert V., Ramankutty N., Foley J.A., 2012. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232. https://doi.org/10.1038/nature11069 DOI: https://doi.org/10.1038/nature11069
  24. Smith R.M., Kaur G., Orlowski J.M., Singh G., Chastain D., Irby T., Krutz L.J., Falconer L., Cook D.R., 2019. Narrow-row production system for soybeans in Mississippi Delta., Crop Forage Turfgrass Manag. 5(1), 1–6. https://doi.org/10.2134/cftm2019.02.0015 DOI: https://doi.org/10.2134/cftm2019.02.0015
  25. Soares I.O., de Rezende P.M., Bruzi A.T., Zuffo A.M., Zambiazzi E.V., Fronza V., Teixeira C.M., 2015. Interaction between soybean cultivars and seed density. Am. J. Plant Sci. 6(9), 1425–1434. http://dx.doi.org/10.4236/ajps.2015.69142 DOI: https://doi.org/10.4236/ajps.2015.69142
  26. Stagnari F., Maggio A., Galieni A. Pisante M., 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4(2). https://doi.org/10.1186/s40538-016-0085-1 DOI: https://doi.org/10.1186/s40538-016-0085-1
  27. Staniak M., 2023. Postęp odmianowy w soi. https://www.agropolska.pl/uprawa/straczkowe/postep-odmianowy-w-soi,153.html [dostęp: 10.07.2023].
  28. Ulafić A., Varga I., Stošić M., Iljkić D., Antunović M., 2020. Analysis of soybean growth in regard to different row-spacing. Bulg. J. Agric. Sci. 26(3), 533–539.
  29. Wortman S.E., Francis C.A., Galusha T.D., Hoagland C., Wart J.V., Baenziger P.S., Hoegemeyer T., Johnson M., 2013. evaluating cultivars for organic farming: maize, soybean, and wheat genotype by system interactions in eastern Nebraska. Agroecol. Sustain. Food Syst. 37(8), 915–932. https://doi.org/10.1080/21683565.2013.764956 DOI: https://doi.org/10.1080/21683565.2013.764956
  30. Vincent-Caboud L., Vereecke L., Silva E., Peigne J., 2019. Cover crop effectiveness varies in cover crop-based rotational tillage organic soybean systems depending on species and environment. Agronomy 9(6), 319. https://doi.org/10.3390/agronomy9060319 DOI: https://doi.org/10.3390/agronomy9060319

Downloads

Download data is not yet available.

Podobne artykuły

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.