Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 5 (2019)

Articles

POSSIBILITY OF ACHIEVING ORGANIC YIELDS FOR MEDICINAL AND AROMATIC PLANTS BY BIOFERTILIZATION WITH Azotobacter chroococcum

DOI: https://doi.org/10.24326/asphc.2019.5.1
Submitted: October 28, 2019
Published: 2019-10-28

Abstract

The aim of this study was to examine the effects of management practices and biofertilization on microbial activity in rhizosphere and yield of medicinal and aromatic plants. Field experiment was performed using four plant species: peppermint (Mentha × piperita L.), pot marigold (Calendula officinalis L.), sweet basil (Ocimum basilicum L.), and dill (Anethum graveolens L.). Treatments were arranged in a split-plot layout in four replicates using basic plots under conventional and organic management, and subplots with and without biofertilizer (Azotobacter chroococcum). Organic management positively affected the microbial number and activity. Biofertilization increased the total microbial number (13–21%), number of ammonifiers (13–60%), nitrogen-fixing bacteria (7–36%), actinomycetes (36–50%), fungi (60–100%), cellulolytic microorganisms (57–217%), dehydrogenase (28–52%) and ß-glucosidase activity (15–39%). The effects of management practices and biofertilization were highly significant for the yield of examined plants. The yields were higher on inoculated treatments both in conventional (5–26%) and organic (7–15%) growing system.

References

  1. El-Hadi, N.I.M.A., El-Ala, H.K.A., El-Azim, W.M.A. (2009). Response of some Mentha species to plant growth promoting bacteria (PGPB) isolated from soil rhizosphere. Aust. J. Basic Appl. Sci., 3, 4437–4448.
  2. Béguin, P., Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol. Rev., 13, 25–58.
  3. Berg, G., Smalla, K. (2009). Plant species and soil type co¬operatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol., 68, 1–13. DOI: 10.1111/j.1574-6941.2009.00654.x
  4. Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management, Maheshwari, D. (ed.). Springer, Berlin−Heidelberg, 15–45. DOI: 10.1007/978-3-642- 33639-3_2
  5. Briones, A.M., Reichardt, W. (1999). Estimating microbial population counts by ‘most probable number’ using Mi¬crosoft Excel. J. Microbiol. Meth., 35, 157–161.
  6. Cardoso, E.J.B.N., Vasconcellos, R.L.F., Bini, D., Miyauu¬chi, M.Y.H., dos Santos, C.A., Alves, P.R.L., de Paula, A.M., Nakatani, A.S., de Moraes Pereira, J., Nogueira, M.A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric., 70, 274– 289. DOI: 10.1590/S0103-90162013000400009
  7. Casida, L.E.J., Klein, D.A., Santoro, T. (1964). Soil dehy¬drogenase activity. Soil Sci., 98, 371–376.
  8. Darzi, M.T. (2012). Influence of organic fertilizer and bio¬stimulant on the growth and biomass of dill (Anethum graveolens). Intl. J. Agri. Crop Sci., 4, 98–102.
  9. Gomiero, T., Pimentel, D., Paoletti, M.G. (2011). En¬vironmental impact of different agricultural man¬agement practices: conventional vs. organic ag¬riculture. Crit. Rev. Plant Sci., 30, 95–124. DOI: 10.1080/07352689.2011.554355
  10. Hayano, K. (1973). A method for the determination of ß-glucosidase activity in soil. Soil Sci. Plant Nutr., 19, 103–108.
  11. Heidari, G., Khosro, M., Sohrabi, Y. (2016). Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Front. Plant Sci., 7, 1730. DOI: 10.3389/ fpls.2016.01730
  12. Hosseinzadah, F., Satei, A., Ramezanpour, M.R. (2011). Effects of mycorrhiza and plant growth promoting rhi¬zobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis L. Middle East J. Sci. Res., 8, 947–953.
  13. IUSS Working Group WRB. (2014). World Reference Base for Soil Resources 2014. International Soil Classifica¬tion System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome, 181.
  14. Jnawali, A.D., Ojha, R.B., Marahatta, M. (2015). Role of Azotobacter in soil fertility and sustainability – A re¬view. Adv. Plants Agric. Res., 2, 00069.
  15. Kaschuk, G., Alberton, O., Hungria, M. (2010). Three de¬cades of soil microbial biomass studies in Brazilian eco¬systems: lessons learned about soil quality and indica¬tions for improving sustainability. Soil Biol. Biochem., 42, 1–13. DOI: 10.1016/j.soilbio.2009.08.020
  16. Köberl, M., Schmidt, R., Ramadan, E.M., Bauer, R., Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front. Microbiol., 4, 400. DOI: 10.3389/ fmicb.2013.00400
  17. Lamsal, K., Kim, S.W., Kim, Y.S., Lee, Y.S. (2013). Biocon¬trol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol., 23, 897–904. DOI: 10.4014/jmb.1209.09069
  18. Liang, C., Balser, T.C. (2011). Microbial production of re¬calcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol., 9, 75. DOI: 10.1038/nrmicro2386-c1
  19. Mendes, R., Garbeva, P., Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant bene¬
  20. Bjelić, D., Adamović, D., Marinković, J., Tintor, B., Mrkovački, N. (2019). Possibility of achieving organic yields for medicinal and aromatic plants by biofertilization with Azotobacter chroococcum. Acta Sci. Pol. Hortorum Cultus, 18(5), 3–11. DOI: 10.24326/ asphc.2019.5.1
  21. ficial, plant pathogenic, and human pathogenic micro¬organisms. FEMS Microbiol. Rev., 37, 634–663. DOI: 10.1111/1574-6976.12028
  22. Mrkovački, N., Milić, V. (2001). Use of Azotobacter croo¬coccum as potentially usefull in agrixultural application. Ann. Microbiol., 51, 145–159.
  23. Ordookhani, K., Sharafzadeh, S., Zare, M. (2011). Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv. Environ. Biol., 5, 672–677.
  24. Qasim, M., Abideen, Z., Adnan, M.Y., Gulzer, S., Gul, B., Rasheed, M., Khan, M.A. (2017). Antioxidant proper-ties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot., 110, 240–250. DOI: 10.1016/j.sajb.2016.10.005
  25. Qi, X., Wang, E., Xing, M., Zhao, W., Chen, X. (2012). Rhizosphere and nonrhizosphere bacterial community composition of the wild medicinal plant Rumex pati¬entia. World J. Microbiol. Biotechnol., 28, 2257–2265. DOI: 10.1007/s11274-012-1033-2
  26. Seufert, V., Ramankutty, N., Foley, J.A. (2012). Comparing the yields of organic and conventional agriculture. Na¬ture, 485, 229–232. DOI: 10.1038/nature11069
  27. Sharma, S., Gupta, R., Dugar, G., Srivastava A.K. (2012). Impact of application of biofertilizers on soil structure and resident microbial community structure and func¬tion. In: Bacteria in agrobiology: plant probiotics, Ma-heshwari, D. (ed.). Springer, Berlin, Heidelberg, 65–77. DOI: 10.1007/978-3-642-27515-9_4
  28. Solaiman, Z.M., Anawar, H.Md. (2015). Rhizosphere microbes interactions in medicinal plants. In: Plant growth promoting rhizobacteria (PGPR) and medicinal plants, Egamberdieva, D., Shrivastava, S., Varma, S. (eds). Springer International Publishing, 19–41. DOI: 10.1007/978-3-319-13401-7_2
  29. Teixeira da Silva, J.A., Egamberdieva, D. (2013). Plant-growth promoting rhizobacteria and medicinal plants. In: Recent progress in medicinal plants. Vol. 38. Es¬sential Oils III and Phytopharmacology, Govil, J.N., Bhattacharya, S. (eds). Studium Press LLC, Houston, 26–42.
  30. Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Loccoz, Y.M., Muller, D., Legendre, L., Wisniewski-Dyé, F., Prigent-Combaret, C. (2013). Plant growth-promot¬ing rhizobacteria and root system functioning. Front. Plant Sci., 4, 356. DOI: 10.3389/fpls.2013.00356
  31. Wani, S.A., Chand, S., Ali, T. (2013). Potential use of Azoto¬bacter chroococcum in crop production: an overview. Curr. Agric. Res., 1, 35–38. DOI: 10.12944/CARJ.1.1.04
  32. Wolinska, A., Stepniewska, Z. (2012). Dehydrogenase ac¬tivity in the soil environment. In: Dehydrogenases, Ca-nuto, R.A. (ed.). InTech, 183–210. DOI: 10.5772/4829411

Downloads

Download data is not yet available.

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.