Skip to main navigation menu Skip to main content Skip to site footer

Vol. 1 No. 2 (2002)

Artykuły

The influence of apple fineness degree on the values of effective water diffusion coefficient during drying in the conditions of forced convention

DOI: https://doi.org/10.24326/aspta.2002.2.4
Submitted: June 5, 2023
Published: 2002-12-31

Abstract

Water content and changes in apple ring thickness were measured during the drying process. The initial thickness of apple rings amounted to 5, 7 and 10 mm. The apples were dried in the temperature of 55°C, at the drying air flow velocity of 0,5 m·s-1. On the basis of the conducted studies we found out a significant influence of dried apple fineness degree in the conditions of forced convection on the values of effective water diffusion coefficient. With the increase in thickness of dried rings the values of effective water diffusion coefficient grow. It was also noticed that in the initial period of drying, the values of water diffusion coefficient increase for each thickness of apple rings, despite the decrease of humidity of the dried material. It is after a certain time, amounting to (5 mm) = 4,5·103 s, (7 i 10 mm) = 6,3·103 s, respectively, for the ring thickness of L = 5 mm, 7 and 10 mm, that the decrease of humidity in the dried raw material is accompanied by the decrease of the value of this coefficient, continuing till the end of drying process, i.e. to the humidity of 16%.

References

  1. Carbonell J. V., Pinaga F., Yusa V., Pena J. L., 1986. Dehydration of paprika and kinetics of color degradation. J. Food Eng. 5(3), 179–193. DOI: https://doi.org/10.1016/0260-8774(86)90024-5
  2. Crank J., 1975. Mathematics of diffusions. 2nd ed. Oxford University Press, London.
  3. Gürta Seyhan F., Evranuz Ö., 2000. Low temperature mushroom (A. bisporus) drying with desiccant dehumidifiers. Drying Technol. 18(1&2), 433–445. DOI: https://doi.org/10.1080/07373930008917714
  4. Luikov A. V., Michailov J. A., 1965. Theory of energy and mass transfer. Pergamon Press. Oxford.
  5. Nowak D., Lewicki P. P., 1999. Wyznaczanie współczynników dyfuzji wody w procesie suszenia jabłek za pomocą promieni podczerwonych. Zesz. Nauk. Politechniki Łódzkiej 821. Inż. Chem. Proc. 25. Łódź, 87–94.
  6. Pabis S., 1982. Teoria konwekcyjnego suszenia produktów rolniczych. PWRiL Warszawa,43–46.
  7. Pinaga F., Carbonell J. V., Pena J. L., Miguel J. J., 1984. Experimental simulation of solar drying of garlic using an adsorbent energy storage bed. J. Food Engineering 3(3), 187–203. DOI: https://doi.org/10.1016/0260-8774(84)90020-7
  8. Raghavan G. S. V., Tulasidas T. N., Sablani S. S., Ramaswamy H. S., 1995. A method of determination of concentration dependent effective moisture diffusivity. Drying Technol. 13(5–7), 1477–1488. DOI: https://doi.org/10.1080/07373939508917034
  9. Sherwood T. K., 1929. Drying of solids. J. Food Eng. Chem. 21(1), 12–16. DOI: https://doi.org/10.1021/ie50229a004

Downloads

Download data is not yet available.