Health-enhancing activity of ellagic acid and ellagitannin of selected species from the genus *Rubus* – Review

Prozdrowotne działanie kwasu elagowego i elagotaniny wybranych gatunków z rodzaju *Rubus* – Przegląd

Summary. Numerous species of plants from the genus *Rubus* contain biologically active compounds that can be used in the prophylaxis and phytotherapy of various diseases. Among active compounds ellagic acid and ellagitannin exhibit a broad spectrum of health-enhancing properties, e.g. antioxidant, coagulant, anti-inflammatory, antiviral, anti-bacterial, anti-carcinogenic, and anti-mutagenic activity. Ellagic acid inhibits the activity of such carcinogens as benzo(a)pyrene, aflatoxin B1, and nitroso compounds. It can also be used in the therapy of Alzheimer’s disease. Ellagittannins, i.e. precursors of ellagic acid, exert an effect on the activity of enzymes involved in the proper functioning of the circulatory system vessels. The two main ellagittannins, i.e. sanguin H-6 and lambertianin C, are the major compounds responsible for the antioxidant properties of raspberry fruit. The fruits and leaves of *Rubus* plants containing phytotherapeutic compounds, e.g. ellagic acid and ellagitannins, are used for the production of cakes, sweets, syrup, jam, juice, teas, alcoholic and non-alcoholic beverages. The cultivation of plants from the genus *Rubus* containing ellagic acid and ellagitannins should be propagated due to their health-promoting effects useful for the prevention of many diseases and as natural phytochemicals in the pharmaceutical, cosmetic, and food industries.

Key words: Rosaceae, biologically active compounds, phytocompounds, phytotherapy

INTRODUCTION

Plants from the genus *Rubus* are a source of food and therapeutic raw material in many regions of the world. Their health-enhancing properties were already known in Antiquity. In the Greek and Roman folk tradition as well as Asian, Chinese, and Indian Ayurvedic medicine, different *Rubus* organs (roots, stems, branches, leaves and flowers) were used in the phytotherapy of many diseases [Hummer 2010, Baranowska et al.
The medicinal activity of various species from the genus *Rubus* is associated with, e.g., the presence of ellagic acid and ellagitannin. There are literature reports describing the health-promoting properties of many representatives of this genus, e.g., *R. chamaemorus* [Thiem and Goœliñska 2004], *R. coreanus* [Kim et al. 2013, Im et al. 2013], *R. ellipticus* [Li et al. 2009], *R. fairholmanus* [George 2013, 2014], *R. fruticosus* [Riaz et al. 2011], *R. lambertianus* [Tanaka et al. 1993], *R. roseafolium* [De Souza et al. 2017], and *R. unifolius* [Quave et al. 2012].

Roots. Decoctions from *R. fruticosus* roots were used to treat dysentery and diarrhoea [Jan et al. 2008]. When ground and mixed with honey, *R. fruticosus* roots were used to relieve heartache and oedema [Popović et al. 2014]. The roots of *R. ellipticus* and *R. fairholmanus* exerts astringent and toning effects due to the high content of tannins and saponins [Li et al. 2009, George et al. 2013, 2014]. *Rubus ulmifolius* root extracts can be used to inhibit *Staphylococcus aureus* biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. This can therefore be a material for development of a drug for prevention and treatment of *S. aureus* biofilm-associated infections [Quave et al. 2012].

Aboveground parts. Investigations of various *R. fruticosus* organs in terms of their antimicrobial activity have demonstrated the highest phytotherapeutic efficiency of bioactive compounds present in the shoot, followed by those contained in the root, leaves, and fruits [Riaz et al. 2011]. It has been found that the activity against *Staphylococcus aureus* is provided by rubanthrone A, i.e., a compound isolated from aboveground parts of *R. ulmifolius* [Flamini et al. 2002]. Shoots of *Rubus* plants are used in treatment of colds, fever, and flu-like infections [Hummer 2010]. Tea from young *R. idaeus* shoots and leaves is applied in treatment of diarrhoea, alleviation of menstrual pains, and mitigation of skin swelling [Popović et al. 2014].

Leaves. Extracts from *R. fruticosus* leaves have been used in the treatment of diarrhoea, dysentery, heartaches, cold, cough, fever, and cardiac pain [Popović et al. 2014]. Fresh leaves of this species were chewed as part of prophylaxis of gum diseases and scurvy [Patel et al. 2004]. *Rubus fruticosus* and *R. idaeus* leaves have been used as an astringent agent to treat throat inflammation, intestinal infections, and inflammatory skin diseases [Pavlovich 2000, Gudej and Tomczyk 2004, Patel et al. 2004, Zhang et al. 2011, de Souza et al. 2017]. Tea from *R. idaeus* leaves and shoots is a diuretic agent and induces respiration [Popović et al. 2014]. Given their rich chemical composition, nutritional and dietary values, and antioxidant activity, these organs are a valuable medicinal raw material [Baranowska et al. 2015, Chwil and Kostryco 2018].

Fruits. Raspberry fruits are known as a pharmacopeal raw material with antimicrobial and anti-inflammatory activity [Hummer 2010]. *Rubus coreanus* fruits have been used in Asian countries as a herbal remedy for alleviation of inflammatory and vascular diseases. *Rubus coreanus* fruit extracts contributed to reduction of atherosclerosis, improved the lipid profile, and inhibited NF-κB activation in mice [Kim et al. 2013]. *Rubus cassius* fruits were applied in treatment of diarrhoea and dysentery. *Rubus fruticosus* fruits had a beneficial effect on digestive processes [Popović et al. 2014]. Anthocyanins in *R. coreanus* fruits are responsible for the antioxidant capacity of the material [Im et al. 2013]. *Rubus* seed extracts exhibited antioxidant and anti-inflammatory properties [Fazio et al. 2013]. The rich chemical composition of organs and the wide range of pharmacological activity of various species from the genus *Rubus* have prompted the present at-
tempt to review phytotherapeutic literature reports on two phytotherapeutically important compounds, i.e. ellagic acid and ellagitannins.

The aim of the study was to determine the health-enhancing activity of ellagic acid and ellagitannins contained in various species from the genus *Rubus*.

LITERATURE REVIEW

Rubus ideaeus L. fruits are a rich source of health-enhancing phenolic compounds [Kalt *et al.* 1999], including ellagic acid and hydrolysing tannins (ellagitannins) [Zafirilla *et al.* 2001, Mullen *et al.* 2002]. These compounds are widespread in the plant world [Thiem and Goœliñska 2004].

Ellagic acid

Ellagic acid (2,3,7,8-tetrahydroxy[1]-benzopyranol[5,4,3-cde]benzo- pyran-5,10-dione) was discovered in 1831 by Bracinnot [Malini *et al.* 2011]. It is a highly thermostable molecule with a melting point of 350°C and a molecular mass of 302,197 g/mol. The compound is easily soluble in water, alcohol, ether, and potassium hydroxide. It is composed of lipophilic and hydrophilic parts. The lipophilic group contains four aromatic rings and four phenolic groups, and the hydrophilic part has two lactone hydrogen bond-forming groups [Sepúlveda *et al.* 2011].

Occurrence and content of ellagic acid. In the family Rosaceae, high concentrations of ellagic acid have been found in the fruit of representatives of genera *Fragaria*, *Rubus*, and *Rosa*. It is also present in other fruits, e.g. grapes, pomegranates, black currant, mango, guava, kaki, almonds, as well as Italian, pistachio, and cashew nuts and hazelnuts, and in green tea [Soong and Barlow 2006, Türk *et al.* 2010, Truchado *et al.* 2012].

Raspberries, blackberries, and strawberries have been found to have the highest concentration of ellagic acid. Its content was 2.7–18.1 mg/kg in the fresh weight of raspberry fruit and 300.1–338.1 mg/kg in blackberry fruit. Similarly, ellagic acid has been determined as the main phenolic component of cloudberry fruit (>160 mg/100g), Arctic blackberry (>160 mg/100g), and strawberry (>40 mg/100g) [Häkkinen *et al.* 1999, Segantini *et al.* 2015]. Alcoholic beverages, e.g. nut liquor, brandy, rum, whiskey, and tropical drinks, are a source of ellagic acid as well [Hossen *et al.* 2017].

Phytotherapeutic activity of ellagic acid. Ellagic acid is a health-enhancing component of a diet rich in raspberries and other berries. The compound has a wide spectrum of phytotherapeutic effects: it exhibits anti-carcinogenic, anti-mutagenic, and HIV-inhibition activity [Take *et al.* 1989, Maas *et al.* 1991]. It also inhibits avian myeloblastosis virus by interfering with reverse transcriptase and α and β DNA polymerase replication [Take *et al.* 1989]. Ellagic acid has a positive effect on human health, e.g. by its antioxidant activity [Verde *et al.* 2013]. In investigations conducted in mice and rat models (*in vitro*), the compound was found to inhibit tumour DNA polymerases as well as carcinogens, e.g. benzo(a)pyrene, aflatoxin B1, nitroso compounds, 3-methylcholanthrene, and N-2-fluorenylacetamide [Maas *et al.* 1991]. Other carcinogenic compounds, e.g. 1-chloro-2,4-dinitrobenzene and benzo(a)pyrene-4,5-oxide, were inactivated by an
enzyme (glutathione s-transferase) stimulated by ellagic acid [Das et al. 1985]. This acid reacted with free radicals forming an inactive complex and with the carcinogenic epoxide benzo(a)pyrene diol, resulting in formation of a new compound with an open epoxide pyrene ring and with no carcinogenic properties [Sayer et al. 1982].

Ellagic acid exerts an anti-carcinogenic effect on the VEGF-A factor, which is involved in the growth, proliferation, and migration of endothelial cells in bladder cancer [Pinto et al. 2010, Aldebasi et al. 2013]. The compound prevents metastasis and development of various types of cancer through inhibition of the proliferation of tumour cells, induction of their apoptosis, effects on inflammatory processes, and disruption of angiogenesis processes [Talcott and Lee 2002, Zhang et al. 2014]. As reported by Juranic [2005], an aqueous extract of raspberry seeds exhibited an anti-proliferative effect on colon cancer cells in in vitro cultures. This activity has been assigned to ellagic acid by Olsson et al. [2004].

Consumption of foods containing ellagic acid and ellagitannins in the daily diet has antiviral and antioxidant activity and prevents development of colorectal and oesophageal cancers [Corthout et al. 1991, Rao et al. 1991, Stoner and Morse 1997, Kalt et al. 1999, Whitley et al. 2003, Han et al. 2005]. Ellagic acid has aroused researchers’ interest as a compound for potential use in the treatment of Alzheimer’s disease [Papoutsi et al. 2008], as it has a beneficial effect on the nervous system as well as antidepressant and anxiolytic activity [Farbood et al. 2015, de Oliveira et al. 2016]. The mechanism of action of this acid consists in stimulation of the formation of β-amyloid peptide fibrils and inhibition of the neurotoxicity of peptide monomers playing a key role in the pathogenesis of inhibiting Alzheimer’s disease [Feng et al. 2009]. Ellagic acid reduces the blood glucose level, thereby preventing diabetes development [Hossen et al. 2017]. It is also an effective antioxidant due to its ability to bind free radicals and protect tissues and physiologically important compounds from oxidation [Tulyatham et al. 1989]. It is a better antioxidant than α-tocopherol [Dziedzic and Hudson 1984, Kurechi and Kunugi 1983]. It protects mitochondrial and microsomal lipids from harmful oxidation [Okuda et al. 1983].

Ellagitannins

Ellagitannins represent a group of biologically active compounds, i.e. tannins; they are esters of hexahydroxydiphenolic acid, gallic acid, their derivatives, and usually beta-D-glucose monosaccharides. The ellagitannin group comprises monomeric (nupharin A, geraniin, tellimagrandin II), oligomeric (nupharin E, nupharin C, hirtellin A), and C-glycosidic (vescalagin, castalgin) ellagitannins. The compounds are characterised by high molar mass [Grundhöfer et al. 2001, Seeram et al. 2004, Pinto et al. 2008].

Health-enhancing activity of ellagitannins. Besides ellagic acid, the health-enhancing R. idaeus fruits contain ellagitannins and ellagic acid glycosides as well as a number of other bioactive compounds, e.g. anthocyanins, flavonoids, phenolic acids, and flavan-3-ols [Rommel and Wrolstad 1993, Ancos et al. 2000, Mullen et al. 2002, Maatta-Riihinen et al. 2004].

Ellagitannins are present in plants from the family Rosaceae. The ellagitannins contained in the representatives of the genus Rubus are dominated by sanguinuin H-6 and lambertianin C [Tanaka et al. 1993, Sparzak et al. 2010]. Investigations of the antimicrobial activity of raspberry shoot extracts containing phenolic compounds, e.g. sanguin
H-6 and ellagic acid, in comparison with ampicillin, have demonstrated inhibitory activity towards various bacterial strains (Bacillus subtilis, Clostridium sporogenes, Staphylococcus epidermidis, Neisseria meningitis, Moraxella catarrhalis, and Helicobacter pylori) [Krauze-Baranowska 2014]. Due to the high content of sanguin H-6, raspberry fruits exert an anti-proliferative effect on the cervical cancer cell line (HeLa). Cytotoxic activity of sanguin H-6 has been shown in investigations of a leukaemia cell line (HL-60) [Ross et al. 2007].

The antioxidant properties of R. idaeus leaf extract are provided in 50% by ellagitannins (sanguin H-6 and lambertianin C) [Beekwilder et al. 2005]. As shown by Larrosa et al. [2005], daily consumption of ellagitannins and ellagic acid induces apoptosis of cancer cells via an effect on mitochondria. The antiviral activity of ellagitannins involves inhibition of HIV adsorption to cells and inhibition of reverse transcriptase. The oenotherin B ellagitannin is particularly active in this respect [Maas et al. 1991].

Ellagitannin-rich extracts have been found to inhibit oxidation of LDL cholesterol and reduce its accumulation in macrophages [Aviram et al. 2008]. Ellagitannins have a positive effect on the function of blood vessels by induction of formation of nitric oxide synthase in the circulatory system endothelium [Nigris et al. 2005, 2007]. Ellagitannins prevent processes associated with the pathogenesis of Alzheimer’s disease by prevention of platelet aggregation and adhesion of monocytes and endothelial cells [Papoutsi et al. 2008]. Ellagitannin metabolites exhibit anti-atherosclerotic properties. Similar to ellagitannin, ellagic acid inhibits the expression of the VCAM-1 factor, which plays a key role in the early stages of atherosclerosis [Cybulsky 2001, Papotusi et al. 2008].

Ellagic acid is produced during hydrolysis of ellagitannins in the small intestine. It is metabolised in 99% by intestinal microflora. The process results in formation of bioavailable urolithins. These compounds are composed of 6H-dibenzo[b,d]pyran-6-one in the basic part and a lower number of hydroxyl groups [Espin et al. 2007, Gonzales-Bario et al. 2011]. Urolithins are metabolised by phase II enzymes, mainly in enterocytes and hepatocytes [Gonzales-Sarrias et al. 2010].

An increase in the ellagic acid content can be noted during fruit processing, probably due to hydrolysis of ellagitannins into free ellagic acid [Zafrilla et al. 2001]. Addition of sugar and pectins and thermal treatment applied in jam production was found to result in a 2.5-fold increase in the ellagic acid content, in comparison with its concentration in fresh fruits [Maghradze et al. 2011].

CONCLUSIONS

Ellagic acid and ellagitannins are phytocompounds with a broad spectrum of health-enhancing phytotherapeutic activity. Given their content of health-enhancing ellagic acid and ellagitannins, cultivation of the medicinal plants from the genus *Rubus* should be recommended. As bioactive compounds, ellagic acid and ellagitannins can be used in pharmaceutical, cosmetic, and food industries.
REFERENCES

Soong Y., Barlow P.J., 2006. Quantification of gallic acid and ellagic acid from langan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem. 97(3), 524–530.

Truchado P., Larrosa M.T., Garcia-Conesa M.T., Cerdà B., Vidal-Guevara M.L., Tomás-Barberán F.A., Espín J.C., 2012. Strawberry processing does not affect the production and urinary ex-

Acknowledgments: The research was supported by the Ministry of Science and Higher Education of Poland in part of the statutory activities of University of Life Sciences in Lublin.

Streszczenie. Liczne gatunki roślin z rodzaju Rubus zawierają substancje biologicznie czynne stosowane w profilaktyce i leczeniu fitoterapeutycznym różnych chorób. Wśród tych związków aktywnych kwas elagowy i elagotaniny wykazują szerokie różnorodne właściwości prozdrowotne, m.in. antyoksydacyjne, zwiększające krzepnięcie krwi, przeciwzapalne, przeciwiwirusowe (hamujące aktywność wirusa HIV), antybakteryjne, antykanzerogene, antymutagenne. Kwas elagowy hamuje aktywność czynników rakotwórczych: benzo(a)pyrene, aflatoksyny B1, związkaś nitrozowych. Może być stosowany w leczeniu choroby Alzheimera. Elagotaniny będące prekursorami kwasu elagowego wpływają na aktywność enzymów zaangażowanych w prawidłowe funkcjonowanie naczyń systemu krwionośnego. Dwie główne elagotaniny, sangwina H-6 i lambertianina C, są najważniejszymi związkami zapewniającymi własności antyoksydacyjne owoców malin. Owoce i liście roślin z rodzaju Rubus, zawierające fitoterapeutyczne związki, m.in. kwas elagowy i elagotaniny, są wykorzystywane do produkcji ciastek, słodyczy, dżemów, syropów, soków, herbatek, napojów alkoholowych i niealkoholowych. Należy propagować uprawę roślin z rodzaju Rubus i spożycie owoców zawierających kwas elagowy i elagotaniny ze względu na ich prozdrowotne działanie, które może być wykorzystane w profilaktyce wielu chorób. Rośliny z rodzaju Rubus mogą być także wykorzystywane jako źródło fitozwiązków w przemyśle farmaceutycznym, kosmetycznym i spożywczym.

Słowa kluczowe: Rosaceae, substancje biologicznie czynne, fitozwiązki, fitoterapia

Otrzymano/ Received: 26.01.2018
Zaakceptowano/ Accepted: 16.04.2018