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Anthocyanin is the largest class of flavonoids and 
is responsible for the colors of flowers and other tissu-
es. In most plants, anthocyanin synthesis and accumu-
lation are controlled and induced by sugars [Hu et al. 
2016, Sun et al. 2017, Luo et al. 2019b]. Simultaneous 
increases of the anthocyanin content and sugar con-
tent are observed in some plant species [Hiratsuka et 
al. 2001, Zhou et al. 2020]. Many enzymes involved 
in sugar metabolism are specific for their substrate’s 
α or β anomer [Sierkstra et al. 1993, Graille et al. 

2006]. Glucose-6-phosphate-1-epimerase (G6P1E, EC 
5.1.3.15) catalyzes the equilibrium of the anomeric 
forms of D-glucose-6-phosphate at the branch point 
of glucose metabolism [Sierkstra et al. 1993, Graille et 
al. 2006]. Faster NAD(P)H generation reflects a higher 
velocity constant for the interconversion from α-D-glu-
cose-6-phosphate to β-D-glucose-6-phosphate [Graille 
et al. 2006]. So far, many G6PlE sequences in plant 
species have been submitted to NCBI [Shimizu et al. 
2017, Baek et al. 2018, Luo et al. 2019b, Ou et al. 
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ABSTRACT

Dianthus chinensis L. is indigenous to northern China, Korea, Mongolia, Kazakhstan, and southeastern 
Russia. It is widely cultivated in urban landscapes. Its flower has a great variety of colors and color schemes. 
Sugars control and induce anthocyanin synthesis and accumulation in plants. In sugar metabolism, many en-
zymes are specific for their substrate’s α or β anomer. Gaining and characterizing genes involved in sugar me-
tabolism and flower color will be beneficial in clarifying the role of sugar in the flower colors of D. chinensis. 
Glucose-6-phosphate-1-epimerase (G6P1E, EC 5.1.3.15) catalyzes the α or β change of glucose-6-phosphate 
at the branch point of glucose metabolism. DchG6P1E1 (MZ292712) was isolated in D. chinensis and cha-
racterized using the tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system. Its cDNA 
full length is 1401 bp, including an open reading frame of 918 bp. In the DchG6P1E1-silenced flowers, the 
reducing purple was observed, as well as the anthocyanin content, reducing sugar content, G6P1E activity, 
and DchG6P1E1 expression were significantly decreased. During the development of floral buds and among 
the three flower colors, the anthocyanin content, reduced sugar content, G6P1E activity, and DchG6P1E1 
expression rose dramatically, with pigments increasing in the petals. Among the organs, the flowers had the 
highest anthocyanin contents and reducing sugar. The highest levels of G6P1E activity and DchG6P1E1 
expression were in the roots. The anthocyanin content was positively related to the reducing sugar content at 
0.05 levels by correlation analysis. In conclusion, DchG6P1E1 is a root-enriched gene associated with flower 
colors in D. chinensis.
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2019, Zhang et al. 2019]. In Zea mays, G6PlE was 
found to mediate the yield and correlate the traits to 
phosphorus availability [Luo et al. 2019a].

Dianthus chinensis is indigenous to northern 
China, Korea, Mongolia, Kazakhstan, and southe-
astern Russia [Lim 2014] and is widely cultivated 
in urban landscapes [Kantia and Kothari 2002, Fu et 
al. 2008, Liu et al. 2021]. Its richness in flower co-
lors and color schemes suggests that the formation 
mechanism of flower color is complicated. Gaining 
genes related to the flower color will be facilitated to 
illustrate the formation mechanism of flower color. 
Using the tobacco rattle virus (TRV)-based virus-in-
duced gene silencing (VIGS) system, we characteri-
zed three DchCHSs involved in the anthocyanin syn-
thesis and the flower color in D. chinensis [Liu et al. 
2021]. In this paper, DchG6P1E1 (MZ 292712) was 
obtained in D. chinensis and characterized by VIGS. 
The levels of anthocyanin content, reducing sugar 
content, G6P1E activity, and DchG6P1E1 expression 
were studied during floral bud development among 
three flower colors and in organs. The correlation be-
tween the anthocyanin content, reducing sugar con-
tent, and G6P1E activity was analyzed.

MATERIAL AND METHODS

Plant materials and growth conditions
The seeds of D. chinensis cv. Pink were brought 

from www.ebay.co.uk. Seedlings were grown in gro-
wth chambers under 16 h light/8 h dark cycles with  
a day/night temperature regime of 22 ℃/20 ℃, respec-
tively. The light intensity was 150 µmol m−2 s −1. The 
seedlings with 4–6 leaves were transplanted in green-
houses at Inner Mongolia Agricultural University, 
Hohhot, China. 

Flora buds at three stages (Fig. 1Aa) and four 
kinds of organs (Fig. 1Ca) were collected from pur-
ple flowering plants. Three kinds of flower colors 
were also collected (Fig. 1Ba). The collected plant 
materials were frozen in liquid nitrogen and stored 
at –80 ℃.

DchG6P1E1 isolation, sequence analysis, and pla-
smid construction

Based on in-house RNA-seq data of D. chinen-
sis, a unigene annotated as G6P1E, c26377_g1, was 

selected. The homologous sequence of DchG6P1E1 
was identified using the BLAST program on the 
website of www.ncbi.nlm.nih.gov. Amino acid sequ-
ence alignment was generated by DNAMAN 5.0.  
A phylogenetic tree was constructed via the neighbor
-joining method in MEGA 11.

Total RNA was extracted with Trizol reagent 
(Invitrogen) from leaves and used to synthesi-
ze the first-strand cDNA. A 443 bp fragment of 
the DchG6P1E1 gene was PCR-amplified from 
the cDNA using primers of DchG6P1E1-F1 / 
R1 (5’-AAGGCCAAGATGATTCCCGA-3’ and 
5’-TCCGACCAAGCCATATGTGA-3’) designed by 
Primer 3. The amplified fragment was inserted into 
the pGEM-T Easy vector (Promega). After sequ-
encing, the inserted fragment was excised from the 
plasmid by the EcoR I restriction enzyme and sub-c-
loned into the pTRV2 vector to generate pTRV2-D-
chG6P1E1. The resulting plasmid was sequenced to 
verify the correct insertion of the fragment.

Agrobacterium preparation and infection 
Electrocompetent cells of Agrobacterium tumefa-

ciens strain GV3101 were transformed with pTRV1, 
pTRV2, and pTRV2-DchG6P1E1, respectively. The 
transformed cells were selected on LB medium, inc-
luding 50 mg L–1 kanamycin and 50 mg L–1 rifampi-
cin. The positive colonies of pTRV1 and pTRV2 were 
verified by their primers [Liu et al. 2021], and the 
pTRV2-DchG6P1E1 was confirmed with the primers 
of DchG6P1E1-F1 / R1. The positive colonies were 
cultured overnight at 28 ℃ in the LB medium conta-
ining appropriate antibiotics. After centrifugation, the 
Agrobacterium cells were incubated in the infiltration 
buffer to a final OD600 of 1.8 at 28 ℃. The infiltration 
buffer included 10 mM MES, 150 µM acetosyringone, 
and 10 mM MgCl2.

The bacteria containing pTRV1 were mixed with 
those containing pTRV2 (control) or pTRV2-DchG-
6P1E1 in a 1:1 ratio. The mixed bacterial cultures 
were used to infect flora buds at stage 2 under a va-
cuum at –100 kPa for 20 min [Liu et al., 2021]. Then, 
the infected flora buds were inserted into plastic tubes 
with the nutrition buffer [Shang et al. 2007] under the 
same growth condition mentioned above. The control 
and the flowers with silencing phenotypes were col-
lected, frozen in liquid nitrogen, and stored at –80 ℃.
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Measurements of anthocyanin content and reducing 
sugar content

The anthocyanin content was measured based on 
Rabino and Mancinelli [1986]. The collected plant 
materials were ground and extracted by 1% HCl in 
methanol (v/v) with gentle shaking at 4 ℃ for 24 h. 
Four hundred milliliters of distilled water and four 
hundred milliliters of chloroform were added to the 
extraction. After centrifugation, the absorbance of the 
supernatant was measured at 530 and 657 nm with  
a Spectrophotometer UV-1800 (SHIMADZU, Japan). 
The sample’s anthocyanin content per 1 g fresh weight 
was determined by A530 – 0.25 A657. 

The reduced sugar content was measured based 
on Wood and Bhat [1988]. The collected plant mate-
rials were ground and extracted by distilled water. The 

extraction was mixed with 2 mL DNS reagent (Beijing 
Solarbio Science & Technology Co., Ltd, China) and 
placed in a boiling water bath for 5 min. After being 
cooled at room temperature, the mixture was assayed 
at 540 nm. The absorbance values were translated into 
glucose equivalent using a standard graph obtained by 
plotting glucose (0.1–3.0 mg) against absorbance. 

G6P1E activity assay
Based on the methods [Graille et al. 2006], the 

G6P1E activity was assayed with minor modifica-
tions. The collected plant materials were ground and 
extracted in the buffer (50 mM imidazole/hydrochloric 
acid, 50 mM KCl, 8 mM MgSO4, pH 7.6) at 25 ℃. 
After centrifugation, the supernatant was mixed with 
1.5 mM α-D-glucose (Sigma-Aldrich, Co.), 2 mM 
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NADP+ (Coolaber Science & Technology, China), 
2 mM ATP, 0.1 U mL–1 hexokinase and 30 U mL–1 
6-phosphoglucose dehydrogenase. The last three re-

agents were bought from Baiji (Hubei) Biotechnology 
Co. Ltd, China. The reaction system was incubated 
at 25 °C for 1 min, and 200 µL of 4 mol L–1 HClO4 
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Fig. 2. Alignment of the putative protein sequence of DchG6P1E1 with its homologs from other plant species. The accession 
numbers of the amino acid sequences are as follows: Ipomoea nil (Ini) XP019161630.1; Spinacia oleracea (Sol), XP021866936.1; 
Citrus clementine (Ccl), XP006446609.1; Chenopodium quinoa (Cqu), XP021728522.1; Pyrus ussuriensis × Pyrus communis 
(Pus × Pco), KAB2610169.1; Malus domestica (Mdo), XP028953379.1; Dianthus chinensis (Dch), MZ292712; Beta vulgaris 
subsp. vulgaris (Bvu), XP010681853.1
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was added to terminate. And then, 200 µL of 4 mol 
L–1 KOH was added to neutralize. The G6P1E activity 
was determined by measuring the increase in absor-
bance at 340 nm caused by the generation of NADPH. 

QRT-PCR analysis
Total RNA was prepared from the collected plant 

materials and was used to synthesize the first-strand 
cDNA. To avoid amplification of RNA from the si-
lencing vectors, DchG6P1E1-specific primers (F2: 
5’-TGTCTGGAAACCACCAAAAGC-3’ and R2: 
5’-AGTCATCCAACGACCACATCC-3’) were desi-
gned outside the region used for VIGS. The size of the qR-
T-PCR product was 122 bp. DchACTIN2 (MZ292711) 
was used as an internal reference gene. A fragment 
of 157 bp was amplified by DchACTIN2-specific pri-
mers (F: 5’-GGTTACGCCCTACCCCACG-3’ and 
R: 5’-CGACATAAGCCAGCTTCTCCTT-3’). QRT-
PCR was performed using Roche LightCycler 480 II 
(Switzerland). Twenty milliliters of the reaction sys-
tem contained 10 μL cDNA, 5 μL 2 × SYBR Green 
qPCR Master Mix (Jiangsu Pubo Biotechnology Co. 
Ltd, China), and 0.1 μL of each forward and reverse 
primer. The thermal condition was conducted as fol-
lows: 95 ℃ for 10 min, 40 cycles of 95 ℃ for 15 s, 
and 60 ℃ for 30 s. The relative expression level of the 
gene was presented by 2- ∆∆CT [Livak and Schmittgen 
2001].

Statistical analysis
All data were means of three replicates with 

standard deviations. Student’s t-test (P < 0.05) and 
Duncan’s multiple range test (P < 0.05) were used to 
identify the significant difference. The relations be-
tween the anthocyanin content, reducing sugar content, 
and G6P1E activity were assessed using Pearson’s 
correlation. All statistical analyses were conducted in 
SPSS 24.0 (IBM, USA).

 

RESULTS

Sequence and homology comparison of DchG6P1E1 
G6P1E catalyzes interconversion between α-D-

glucose-6-phosphate and β-D-glucose-6-phosphate at 
the branch point of glucose metabolism. In order to 
clarify the role of sugar on flower colors, a unigene 
encoding putative G6P1E was identified in an in-ho-

use D. chinensis transcriptome database and re-named 
as DchG6P1E1 (MZ292712). Its cDNA full length is 
1401 bp with an open reading frame of 918 bp (from 
196 bp to 1113 bp). The deduced amino acid sequence 
shared identities of 74.92%, 76.80%, 77.12%, 78.43%, 
83.99%, 84.59% and 86.89% with the G6P1Es from 
Ipomoea nil, Pyrus ussuriensis × Pyrus communis, 
Malus domestica, Citrus clementina, Spinacia olera-
cea, Chenopodium quinoa and Beta vulgaris subsp. 
Vulgaris, respectively (Fig. 2). 

The phylogenetic tree of the G6P1Es was construc-
ted using the neighbor-joining method. The tree was 
divided into four subgroups, and the G6P1Es in the 
same subgroup were from the same family (Fig. 3). 
G6P1Es of Malus domestica (RXH69530.1), Malus 
domestica (XP028953379.1), Pyrus ussuriensis × 
Pyrus communis (KAB2610169.1), Pyrus × bretsch-
neideri (XP009371762.1) and Pyrus × bretschneide-
ri (XP009370357.1) from the Rosaceae family, were 
gathered in one group. The second group included 
G6P1Es from Citrus unshiu (GAY61338.1), Citrus 
clementina (XP006446609.1), and Citrus sinensis 
(XP006470230.1), which belongs to the Rutaceae fa-
mily. Beta vulgaris subsp. vulgaris (XP010681853.1), 
Chenopodium quinoa (XP021728522.1), Spinacia 
oleracea (XP021866936.1), and Spinacia oleracea 
(KNA06251.1) were from the Chenopodiaceae family 
and their G6P1Es were clustered together. DchG6P1E1 
was selected in D. chinensis of the Caryophyllaceae 
family, and its G6P1E was in one group. It suggested 
that the G6P1Es might be family-specific.

Silencing expression of DchG6P1E1 in the flower by 
VIGS

The floral buds of D. chinensis with purple flo-
wers at stage 2 were infected with a mixture of 
Agrobacterium transformed with pTRV2 (control) and 
with a mixture of Agrobacterium transformed with 
pTRV2-DchG6P1E1, respectively. Four days after 
infection, the phenotype of reducing purple was ob-
served in the petals of pTRV2-DchG6P1E1-infected 
floral buds (Fig. 4A). Among the flowers infected with 
pTRV2-DchG6P1E1, 6.44% appeared the phenotype 
of reducing purple. 

We collected the flowers of the control and the 
flowers with silencing phenotypes, respectively. In 
1 g of the fresh petals, the anthocyanin content in the 
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DchG6P1E1-silenced was 18.44 ±3.45 abs, which was 
dramatically lower than that in control (24.58 ±3.94 
abs) (Fig. 4B). The reducing sugar content markedly 
dropped from 49.90 ±27.04 mg·g–1 in control to 35.39 
± 28.29 mg·g–1 in the DchG6P1E1-silenced (Fig. 4C). 
The G6P1E activity and the DchG6P1E1 expression 
level were both significantly reduced (to 87.96% and 
19.00%, respectively) in pale purple flowers of floral 
buds infected with pTRV2-DchG6P1E1 (Fig. 4D-E). 

Contents of anthocyanin and reducing sugar, G6P1E 
activity, and DchG6P1E1 expression in floral buds

Floral buds at three stages were collected from pur-
ple flowering plants. The petals of buds at stage 1 and 
stage 2 had no pigment, and those at stage 3 had pig-
ment (Fig. 1Aa). During the floral bud development, 
the anthocyanin content was significantly increased 

(Fig. 1Ab). The reducing sugar content showed the 
same pattern as the anthocyanin content (Fig. 1Ac). 
The G6P1E activity significantly rose from stage 1 to 
stage 3 (Fig. 1Ad). With the flower bud growth and the 
pigment accumulation in petals, the relative expres-
sion level of DchG6P1E1 gradually increased (Fig. 
1Ae). Compared with the DchG6P1E1 expression at 
stage 1, expression levels of the gene were increased 
more than two times at stage 2 and stage 3.

Contents of anthocyanin and reducing sugar, G6P1E 
activity, and DchG6P1E1 expression in flowers 

We selected the flowers with apparent differences 
in pigments. The colors were white (W), white with  
a red center (W+R), and red (R) (Fig. 1Ba). The an-
thocyanin content in the red was 2.74 times as much 
as that in the W+R and was 96.08 times as much as 

 
Fig. 3. Phylogenetic tree based on the amino acid sequences of G6P1Es from 13 plant species. The tree was constructed using 
MEGA 11 and a neighbor-joining method. The percentage of replicate trees where the associated taxa clustered together with 500 
bootstrap replications is shown next to the branches
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that in the white (Fig. 1Bb). In 1 g of fresh petals, the 
reducing sugar content was 41.04 mg in the white,  
50.60 mg in the W+R, and 76.45 mg in the red (Fig. 
1Bc). The anthocyanin content and reducing sugar 
content differed significantly between any two flower 
colors. We also investigated the G6P1E activity and 
its gene expression level (Fig. 1Bd–e). The enzyme 
activity’s change pattern was consistent with its gene 
expression. With pigments increase in petals, the 
G6P1E activities and DchG6P1E1 expressions were 
significantly increased.

Contents of anthocyanin and reducing sugar, G6P1E 
activity, and DchG6P1E1 expression in organs 

Flowers, leaves, stems, and roots of purple flowe-
ring plants were collected when flowers opened on the 
first day (Fig. 1Ca). The highest anthocyanin content 
was in the flowers, and the lowest was in the leaves 
(Fig. 1Cb). The anthocyanin content in the roots was 
significantly lower than that in the flowers and signi-
ficantly higher than in the stems. The difference in 
anthocyanin content was noticeable between the two 
organs. The reducing sugar content in the flowers was 
the highest and was remarkably higher than those in 
the other three organs (Fig. 1Cc). No difference was 
made among the other organs. The enzyme activity 
and DchG6P1E1 expression in the roots were the hi-
ghest, far higher than those in the other organs (Fig. 
1Cd–e). The enzyme activity in the flowers was the lo-
west. It was close to that in the leaves but significantly 
lower than in the stems (Fig. 1Cd). The lowest level of 
DchG6P1E1 expression was in the leaves. It was close 
to that in the flowers but significantly lower than in the 
stems (Fig. 1Ce). 

The correlation among the anthocyanin content,  
reducing sugar content, and G6P1E activity 

The anthocyanin content, reducing sugar content, 
and G6P1E activity at three stages of flower buds in 
three kinds of flower colors and four organs were used 
to analyze the correlation (Fig. 5). The anthocyanin 
content was markedly correlated to the reducing sugar 
content (P < 0.05) with the correlation coefficient of 
0.706 (Fig. 5A). The G6P1E activity was negatively 
related to the anthocyanin content (–0.127) and to the 
reducing sugar content (–0.321) (Fig. 5B–C). Both re-
lationships were statistically insignificant.
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DISCUSSION 

Dianthus chinensis is a good ornamental plant in 
gardening [Kantia and Kothari 2002, Fu et al. 2008, 
Liu et al. 2021]. It is also a good plant material for 
studying anthocyanin synthesis and accumulation due 
to its rich flower colors and color schemes. At least 
three DchCHSs are related to flower colors in D. chi-
nensis [Liu et al. 2021]. Compared with the number 
of CHSs related to flower colors in other plant species 
[Nakatsuka et al. 2003, Ohno et al. 2011, Suzuki et al. 
2016], the number of CHSs in D. chinensis means that 
its anthocyanin synthesis and accumulation are much 
more complicated.

Sugar is essential in anthocyanin synthesis and ac-
cumulation [Hu et al. 2016, Sun et al. 2017, Luo et 
al. 2019b]. G6P1E belongs to the aldose-1-epimera-
se family and catalyzes the interconversion of α or β 
anomer of D-glucose-6-phosphate at the branch point 
of glucose metabolism [Graille et al. 2006]. So far, 
G6PlEs have been sequenced in many plants [Shimizu 
et al. 2017, Baek et al. 2018, Luo et al. 2019b, Ou et al. 
2019, Zhang et al. 2019]. DchG6P1E1 (MZ292712) 
was isolated from the in-house RNA-seq data of D. 
chinensis, and its cDNA full length is 1401 bp. The 
DchG6P1E1 protein shared high identities with the 
G6P1Es of 7 plant species (Fig. 2). The G6P1Es of 
13 plant species were used to build a phylogenetic 
tree (Fig. 3). These 13 plant species belong to 4 fa-
milies, Rosaceae, Rutaceae, Chenopodiaceae and 
Caryophyllaceae, and their G6P1Es were divided 
into four subgroups. D. chinensis belongs to the 
Caryophyllaceae family, and its DchG6P1E1 belongs 
to one group. The result suggested that DchG6P1E1 
might be a family-specific gene.

VIGS is an efficient method to identify genes rela-
ted to flower colors [Deng et al. 2014, Sui et al. 2018]. 
Using the established VIGS system [Liu et al. 2021], 
we studied the function of DchG6P1E1 in D. chi-
nensis. In the DchG6P1E1-silenced flowers, purples 
were reduced (Fig. 4Aa). The phenotypes were the 
same as those of silencing structural genes in antho-
cyanin synthesis [Sui et al. 2018, Donoso et al. 2021]. 
The silencing efficiency of DchG6P1E1 was about 
6.44%, which was lower than those of the DchCHSs 
[Liu et al. 2021]. At the same time, the anthocyanin 
content, reducing sugar content, G6P1E activity, and 
DchG6P1E1 expression were significantly decreased 
in the DchG6P1E1-silenced flowers (Fig. 4B–E). With 
the floral bud development, the pigments in the petals 
were gradually accumulated, the G6P1E activity was 
significantly enhanced, and DchG6P1E1 expression 
was up-regulated (Figs. 1Aa, d–e). Compared with 
DchG6P1E1 expression at stage 1, the expression le-
vels of the gene at stage 2 and stage 3 were increased 
more than two times (Fig. 1Ae). Among the flowers 
with apparent differences in pigments (Fig. 1Ba), the 
G6P1E activity and DchG6P1E1 expression were si-
gnificantly increased with pigments increase in petals 
(Fig. 1Bd–e). In purple flowering plants (Fig. 1Ca), 
the G6P1E activity and DchG6P1E1 expression in the 
roots were far higher than in the other organs (Fig. 
1Cd–e). In Zea mays, G6P1E mediates yield and cor-
relates traits to phosphorus availability [Luo et al. 
2019a]. In this paper, another function of DchG6P1E1 
was related to flower colors, and its expression is en-
riched in the roots of D. chinensis. 

Sugar increases the anthocyanin content in plant 
species [Hu et al. 2016, Sun et al. 2017, Luo et al. 
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2019b]. During the floral bud development, the pig-
ment in petals accumulated (Fig. 1Aa), and the an-
thocyanin and reducing sugar content significantly 
increased (Fig. 1Ab–c). Among the flowers with pro-
nounced distinct colors (Fig. 1Ba), the contents of 
anthocyanin and reducing sugar in the red were signi-
ficantly higher than those in the W+R, and the con-
tents of anthocyanin and reducing sugar in the W+R 
were dramatically higher than those in the white (Fig. 
1Bb–c). In purple flowering plants, the highest con-
tents of anthocyanin and reducing sugar were in the 
flowers, followed by those in the roots (Fig. 1Cb–c). 
In our study, the anthocyanin content strongly corre-
lated with the reducing sugar content by correlation 
analysis (Fig. 5A). 

We were following enzyme entries of class 5.1.3. 
– at least ten of 44 enzymes acting on carbohydrates 
and derivatives catalyze the interconversion of α and 
β anomers of certain sugars [Bridge and Axelsen 
2024]. Such enzymes are necessary in sugar metabo-
lism [Graille et al. 2006]. The G6P1E enzyme mainly 
catalyzes α-D-glucose-6-phosphate to produce β-D-
glucose-6-phosphate [Sierkstra et al. 1993], which 
is the substrate of the glucose-6-phosphate dehydro-
genase (G6PD) in the pentose phosphate pathway 
(PPP). The catalyzation process of G6PD is the first 
step of the PPP (OPPP) oxidative phase. The OPPP 
is vital for the sugar regulation of nitrate transport-
er genes, which govern the availability of NO3

− and 
NH4

+ in the root [Lejay et al. 2008]. NO3
− and NH4

+ 
are transported from the root to the shoot, significant-
ly influencing leaves’ photosynthetic CO2 assimilation 
capacity [Rascher et al., 2000; Jin et al., 2015; Feng 
et al., 2020; Raven, 2022]. In our study, the G6P1E 
activity was not related to the reducing sugar content 
by correlation analysis (Fig. 5B), but DchG6P1E1 
is involved in flower colors in D. chinensis (Fig. 4). 
Consequently, we deduce that the G6P1E in roots 
might indirectly influence the photosynthetic CO2 as-
similation capacity in leaves of D. chinensis, which 
results in the changes of sugar content and anthocy-
anin content. G6PlE is more sensitive to low-Pi treat-
ment in roots than in leaves and is related to the yield 
in Zea mays [Luo et al. 2019a]. The detailed pathway 
of how DchG6P1E1 influences anthocyanin synthesis 
and accumulation should be further studied.

CONCLUSIONS

Based on the TRV-based VIGS system and expres-
sion levels during floral buds development and among 
three flower colors, DchG6P1E1 is related to flower 
colors in D. chinensis. Among the organs of D. chinen-
sis, DchG6P1E1 is highly expressed in the root.
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