ACTA^E Acta Sci. Pol., Technica Agraria 3(1-2) 2004, 25-37

OPTYMALNA SYNTEZA MECHANIZMU ZABEZPIECZAJĄCEGO PRZED PRZECIĄŻENIEM NARZĘDZIE UPRAWOWE NA PRZYKŁADZIE WYBRANEGO BEZPIECZNIKA PŁUŻNEGO. CZ. II. MINIMALIZACJA KRYTERIUM OPTYMALIZACJI

Zbigniew Kogut

Instytut Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa oddz. w Kłudzienku

Streszczenie. Celem pracy było takie określenie wartości parametrów konstrukcyjnych procesu pracy przykładowo wybranego bezpiecznika, zabezpieczającego narzędzie uprawowe (np. korpus pługa) przed przeciążeniem, które pozwoliłoby uzyskać jak najmniejszą różnicę między siłami zabezpieczającymi: realizowaną przez bezpiecznik F_x i zadaną (oczekiwaną) przez użytkownika Fxo. Zadanie sprowadzono do poszukiwania minimalnej wartości funkcji celu, opisującej tę różnicę, i zrealizowano metodą optymalizacji nieliniowej przy wykorzystaniu pakietu Mathcad. Jako kryterium optymalizacji przyjęto błąd średniokwadratowy między funkcjami wspomnianych sił F_x i F_{x0} w określonych przedziałach głębokości roboczej h elementu uprawowego i parametru regulacji r wartości siły. Chcac wybiórczo określić fragmenty zmienności funkcji celu o szczególnie istotnym znaczeniu dla realizowanego procesu (wynikające z rangi doboru wartości sił przeciążeniowych) zastosowano dyskretyzację przedziałów zmienności parametrów h i r. Siłę F_{xo} podano w formie tabelarycznej natomiast dla siły F_x wykorzystano model matematyczny opracowany w części I, określający m.in. zbiór parametrów procesu pracy bezpiecznika wpływających na jej wartość i wartości dopuszczalne tych parametrów. Parametry konstrukcyjne podzielono na dwa podzbiory: stałe XKs (o wartościach przyjmowanych, wynikających z przeznaczenia bezpiecznika i narzędzia uprawowego) i dobierane X_{Kd} (o wartościach dobieranych w wyniku realizowanej optymalnej syntezy). Wprowadzono, jako przykładowe, dwa ograniczenia: niezbędny warunek uzyskania równoległości ramy narzędzia uprawowego do powierzchni gleby podczas jej uprawy oraz niewielka siłę (max 6 kN) na nakrętce regulacyjnej pozwalającą na łatwą zmianę przez użytkownika wartości siły przeciążeniowej w zależności od warunków eksploatacji. Podano algorytm doboru poszukiwanych wartości. Przyjęte i dobrane wartości parametrów procesu pracy bezpiecznika zestawiono w tabeli, a realizację optymalnej syntezy zilustrowano przykładowymi zależnościami.

Słowa kluczowe: narzędzia uprawowe, bezpieczniki przeciążeniowe, optymalizacja konstrukcji, symulacja komputerowa

Adres do korespondencji – Corresponding Author: dr inż. Zbigniew Kogut, Zakład Inżynierii Produkcji Roślinnej i Motoryzacji Instytut Budownictwa Mechanizacji i Elektryfikacji Rolnictwa oddz. w Kłudzienku, 05-824 Kłudzienko k. Grodziska Maz.

Z. Kogut

WSTĘP

Artykuł jest kontynuacją pracy mającej na celu dobór parametrów konstrukcyjnych automatycznego mechanizmu zabezpieczającego przed przeciążeniem narzędzie uprawowe, przy ustalonej wcześniej jego strukturze. W części I opracowano analityczny model matematyczny siły zabezpieczającej przed przeciążeniem realizowanej przez wybrany mechanizm bezpiecznika. Model ten zostanie wykorzystany w niniejszej części II, której celem jest określenie wartości parametrów konstrukcyjnych procesu pracy mechanizmu zabezpieczającego (przed przeciążeniem) korpus pługa w taki sposób, aby różnica między siłą realizowaną a siłą zadaną przez użytkownika była jak najmniejsza.

METODY

Sformułowany powyżej cel pracy ma charakter zadania optymalizacyjnego, polegającego na takim dobraniu wartości zmiennych decyzyjnych X ze zbioru wartości dopuszczalnych Φ , aby różnica między siłą zabezpieczającą przed przeciążeniem $F_x(h, r, X)$ realizowaną przez mechanizm zabezpieczający a siłą $F_{xo}(h, r)$ zadaną przez użytkownika, będącą funkcją głębokości roboczej h oraz parametru r regulacji wartości siły, była minimalna. Cel ten zostanie osiągnięty klasycznymi metodami optymalizacji nieliniowej [Findeisen i in. 1980] przy wykorzystaniu pakietu komputerowego Mathcad 8 Professional. Model matematyczny siły $F_x(h,r,X)$ określony został przykładowo (dla wybranego bezpiecznika) w wyniku analizy dynamicznej (kinetostatycznej) jego mechanizmu w części I. Wyniki optymalnej syntezy zostaną zweryfikowane logicznie poprzez symulacyjne przedstawianie uzyskanych wyników i logiczne ich interpretowanie i uzasadnianie. Te wyniki weryfikacji, zamieszczone częściowo w postaci przykładów, pełnią rolę poglądową ilustrującą realizację optymalnej syntezy.

Funkcja zadana. Funkcja ta przedstawia pożądany przez użytkownika charakter zmian wartości siły Fxo zabezpieczającej narzędzie uprawowe przed przeciążeniem (rys. 1). Zmiany te występują w funkcji zarówno głębokości roboczej h, jak i parametru r regulującego wartość powyższej siły. Funkcja zadana jest więc funkcją dynamiczną, określoną w przedziale czasu t (od $t_0 = 0$ s w chwili napotkania przeszkody do czasu t odpowiadającego uzyskaniu przez korpus pługa nastawionej głębokości roboczej). Na podstawie wyników badań [Traulsen 1989], pożądany przebieg siły Fxo powinien być następujący: przy nastawie minimalnej parametru r regulacji wartości w pierwszym etapie (tj. do uniesienia korpusu na wysokość do 0,03 m) siła powinna wzrastać od 9 10³ N (dla h = -0,40 m) do $11,5^{-}10^{3}$ N (dla h = -0,38÷-0,37 m), a następnie powinna liniowo maleć do ok. $5,5\cdot10^3$ N dla głębokości roboczej h = 0 m. Podczas zagłębiania korpusu płużnego zmiany wartości siły Fxo powinny być odwrotne jak podczas unoszenia - maksymalne uniesienie (przy h = 0 m) jest pionową osią symetrii charakteru zmian zadanej siły F_{xo} (rys. 1). Przy nastawie maksymalnej parametru r wartości siły F_{xo} dla $|\mathbf{h}| = 0.37 \div 0.38$ m są zwiększone o ok. 2^{-10³} N przy zachowaniu opisanego dla r_{min} charakteru zmian.

Kryterium optymalizacji. Do przedstawienia minimalizowanej różnicy między funkcjami sił zabezpieczających przed przeciążeniem, zadaną $F_{xo}(h, r)$ i realizowaną

- Rys. 1. Przebieg siły przeciążeniowej zadanej Fxo_{i,j} (po dyskretyzacji wielkościami i, j) w funkcji głębokości h_j i parametru regulacji r_i, gdzie: Fxo_{0,j} – dla regulacji min r₀; Fxo_{1,j} – dla regulacji śr r₁; Fxo_{2,j} – dla regulacji max r₂
- Fig. 1. Overload force Fxo_{i,j} running (after digitization with quantities i, j) as a function of depth h_j and regulation parameter r_i, where Fxo_{0,j} – for regulation min r₀; Fxo_{1,j} – for regulation; Fxo_{2,j} – for regulation max r₂

F_x(h, r, X), wykorzystano formułę błędu średniokwadratowego między dwiema funkcjami [Osiński i Wróbel 1982]. Modyfikując ją dla dwóch zmiennych niezależnych h i r funkcji zadanej F_{x0} , realizowana funkcja celu Θ (zwana także kryterium optymalizacji), dla minimalizacji błędu średniokwadratowego między funkcjami sił: zadaną Fxo(h,r) i realizowaną F_x(h,r,X) w przedziałach głębokości roboczej elementu uprawowego <hmin, hmax> i parametru regulacji wartości siły <rmin, rmax> przyjmie postać jak na rysunku 2, wyrażoną w jednostkach siły, np. N. Wielkości graniczne hmin i hmax są równoznaczne maksymalnej głębokości roboczej elementu uprawowego o wartościach zależnych od warunków eksploatacji, przy czym wartości ujemne występują podczas procesu jego unoszenia – przy napotkaniu na przeszkodę – natomiast wartości dodatnie występują podczas procesu jego zagłębiania. Dla pługa maksymalna głębokość robocza wynosi najczęściej 0,4 m a więc h_{min} = -0,4 m i h_{max} = +0,4 m. Podobnie regulowane wartości siły F_{xo} zależą od warunków eksploatacji, np. dla pługa o szerokości skiby 0,35 m na gleby średniozwięzłe wartości maksymalne wynoszą: dla r_{min} $F_{xo} = 1,15 \cdot 10^4$ N oraz dla r_{max} $F_{xo} = 1.35 \cdot 10^4$ N, przy czym wartość r może być wartością liniową (jak w niniejszym przykładzie) lub względną niemianowaną, np. skalą umieszczoną na konstrukcji elementu uprawowego.

Po wprowadzeniu dyskretyzacji przedziałów zmienności parametrów h i r wielkościami j oraz i, odpowiednio na 27 i 3 części, podanymi – wraz z wartościami funkcji F_{xo} – do obliczeń optymalizacji w formie tabelarycznej, formuła matematyczna funkcji celu dla realizowanej optymalnej syntezy mechanizmu bezpiecznika przyjmie postać:

$$\Theta\left(\mathbf{h}_{j},\mathbf{r}_{i},\mathbf{X}_{E},\mathbf{X}_{Ks},\mathbf{X}_{Kd}\right) = \sqrt{\frac{1}{27\cdot3} \cdot \sum_{i=0}^{2} \sum_{j=0}^{26} \left(F_{X}\mathbf{q}_{i,j} - F_{X}\left(\mathbf{h}_{j},\mathbf{r}_{i},\mathbf{X}_{E},\mathbf{X}_{Ks},\mathbf{X}_{Kd}\right)\right)^{2}}$$
(1)

Technica Agraria 3(1-2) 2004

gdzie: Fxo_{i,j} – siła przeciążeniowa zadana (pożądana) po dyskretyzacji wielkościami i, j; X_E – podzbiór parametrów eksploatacyjnych; X_{Ks} – podzbiór parametrów konstrukcyjnych stałych; X_{Kd} – podzbiór parametrów konstrukcyjnych dobieranych; h_j , r_i , F_x – jak wyżej.

Rys. 2. Graficzna ilustracja funkcji celu $\Theta(h,r,X)$ w postaci błędu średniokwadratowego między dwiema funkcjami sił przeciążeniowych: siłą zadaną $F_{xo}(h,r)$ i siłą realizowaną $F_x(h,r,X)$, w przedziałach zmienności głębokości roboczej h i parametru regulacji r wartości siły

Fig. 2. Graphical illustration of objective function $\Theta(h,r,X)$ in form of an error mean-square between two overload forces: given force $F_{x0}(h,r)$ and realized force $F_x(h,r,X)$, in variation ranges of working depth h and a parameter of regulation r of force value

Zastosowanie dyskretyzacji w tym przypadku pozwala wybiórczo określić fragmenty zmienności funkcji celu o szczególnie istotnym znaczeniu dla realizowanego procesu pracy, np. dla granicznych wartości głębokości roboczej h. Ilustruje to rysunek 3 – w przedziałach głębokości -0,4 m÷-0,35 m i +0,4 m÷+0,35 m częstotliwość dyskrety-zowanych wartości h_j jest znacznie większa niż dla pozostałego przedziału. Wynika to z rangi doboru wartości realizowanych siły F_x w stosunku do wartości zadanych siły F_{xo} przy tych głębokościach.

Rys. 3. Ilustracja dyskretyzacji wielkością j (j = 0, 1, ..., 26) głębokości roboczej h Fig. 3. Illustration of digitization of working depth h with a quantity j (j = 0, 1, ..., 26)

Wartości dopuszczalne i ograniczenia. Na podstawie opracowanego w części I modelu wynika, że realizowana – przez wybrany do optymalnej syntezy mechanizm bezpiecznika – siła przeciążeniowa F_x jest funkcją 24 różnych parametrów procesu pracy tak zabezpieczonego elementu roboczego narzędzia uprawowego. Dla celów niniejszego doboru parametry te, jak już zaznaczono w matematycznej postaci funkcji celu (1), podzielono na podzbiory:

– parametrów eksploatacyjnych X_E, których wartości wynikają z przewidywanych (tj. pożądanych przez użytkownika) warunków pracy narzędzia uprawowego: h, F_y, V_m, Δ_{Vm}

– parametrów konstrukcyjnych, stałych X_{Ks} i dobieranych X_{Kd} , o wartościach określonych jednoznacznie przez konstrukcję w sposób:

– bezpośrednio wynikający z przeznaczenia mechanizmu i narzędzia uprawowego: $a_0, a_1, a_2, a_6, F_0, M_{Bs}, R_1, \lambda, \xi$,

– najkorzystniejszego – w aspekcie sformułowanego kryterium – doboru w wyniku optymalnej syntezy: a3, a4, a5, a7, a8, a9, a10, c, Ls, r, δ_0

co można zapisać: $X_E \in [h, F_y, V_m, \Delta_{Vm}]$

 $X_{Ks} \in [a_0, a_1, a_2, a_6, F_Q, M_{Bs}, R_1, \lambda, \xi]$

 $X_{Kd} \in [a_3, a_4, a_5, a_7, a_8, a_9, a_{10}, c, L_s, r, \delta_o]$

Wartości dopuszczalne (dobierane dla wybranego przykładowo mechanizmu bezpiecznika płużnego) parametrów z podzbioru X_{Kd} są następujące:

- wymiary liniowe: a_3 , a_4 , a_7 , ≥ 0 ; a_5 , a_8 , a_9 , a_{10} , L_s , r > 0

- kąt δ_0 zawiera się w przedziale - $\pi/2 < \delta_0 < \pi/2$

- współczynnik sprężystości c = const, tzn. zalecana jest sprężyna walcowa

Równolegle wprowadzono (przykładowo) następujące ograniczenia obowiązujące podczas realizacji optymalnej syntezy tego mechanizmu:

1) z warunku umożliwiającego uzyskanie równoległości ramy korpusu pługa do powierzchni gleby przy zerowym uniesieniu h (gdy h_{min} = -0,4 m):

$$(a_6 - a_3)^2 + (a_4 - a_7)^2 < (a_5 + a_{10})^2$$
 /2/

rozpatrywanego przykładowo względem długości odcinka a₃, będącego poziomym rzutem od osi obrotu O przegubu w p.C związanego ze stałą ramą narzędzia, uzyskano układ warunków szczegółowych:

$$\begin{cases} a_{6} - \sqrt{(a_{5} + a_{10})^{2} - (a_{4} - a_{7})^{2}} < a_{3} < a_{6} + \sqrt{(a_{5} + a_{10})^{2} - (a_{4} - a_{7})^{2}} \\ a_{10} > a_{4} - a_{5} - a_{7} \\ a_{4} > a_{5} + a_{7} \end{cases}$$
(2a, 2b, 2c)

2) z warunku umożliwiającego przeprowadzenie (za pomocą nakrętki na śrubie) zmiany długości parametru regulacji r wartości siły przeciążeniowej przez użytkownika przy zerowym uniesieniu (gdy $h = h_{min}$):

$$F_{s\min} < 6 \cdot 10^3 \,\mathrm{N} \tag{3}$$

wynika, po uwzględnieniu zależności (5c) z części I pracy:

Technica Agraria 3(1-2) 2004

Z. Kogut

$$\underset{h=h_{\min}}{L} < L_s + r - \frac{6 \cdot 10^3 N}{c}$$
(3a)

Algorytm doboru. Tok postępowania w realizacji obliczeń optymalnej syntezy mechanizmu zabezpieczającego narzędzie uprawowe (a dokładniej korpus pługa) przed przeciążeniem, sprowadzonej do minimalizacji błędu średniokwadratowego po dyskretyzacji przedziałów zmienności głębokości roboczej h i parametru regulacji r wartości siły zabezpieczającej, przedstawiono na rysunku 4. Punktem wyjścia jest model matematyczny realizowanej przez mechanizm siły F_x , opracowany w części I. Na tej podstawie opracowano w jednoznacznym zapisie matematycznym – programowanym w pakiecie Mathcad 8 Plus – algorytm obliczeniowy tej siły F_x , przedstawiony na rysunku 5.

- Rys. 4. Schemat blokowy minimalizacji przyjętego kryterium optymalizacji mechanizmu zabezpieczającego przed przeciążeniem narzędzie uprawowe
- Fig. 4. Block diagram of minimization of assumed optimization criterion of a mechanism protecting a cultivating tool from overload

Na podstawie tego modelu określono także dziedzinę realizowanej siły F_x . W szczególności dokonano dla realizacji niniejszej syntezy podziału parametrów wpływających na tę siłę na podzbiory: eksploatacyjny X_E , konstrukcyjny stały X_{Ks} i konstrukcyjny dobierany X_{Kd} (o czym wcześniej zaznaczono). Dwa pierwsze podzbiory cechują się

Optymalna synteza mechanizmu zabezpieczającego przed przeciążeniem narzędzie...

31

- Rys. 5. Algorytm obliczeniowy realizowanej siły F_x(h,r,X) wybranego mechanizmu zabezpieczającego przed przeciążeniem
- Fig. 5. Analitical algorithm of a realized force $F_x(h,r,X)$ of a selected mechanism protecting a cultivating tool from overload

Technica Agraria 3(1-2) 2004

wartościami założonymi, przyjętymi na podstawie dostępnych informacji na temat zabezpieczanego narzędzia (lub jego elementu roboczego). Zestawiono je w lewej części tabeli 1. Dla trzeciego podzbioru wartości są dobierane ze zbioru wcześniej określonych wartości dopuszczalnych.

Tabela 1. Zestawienie parametrów procesu pracy mechanizmu zabezpieczającego przed przeciążeniem element uprawowy

Table 1. Statement of parameters of work process of a mechanism protecting a cultivating element from overload

Założone (ze zbiorów X_E i X_{Ks}) Assumed parameters (from sets X_E and X_{Ks})			Poszukiwane (ze zbioru X_{Kd}) Searched parameters (from the set X_{Kd})		
oznaczenia designation	jedn. miary unit of measure	przyjęta wartość assumed value	oznaczenia designation	jedn. miary unit of measure	dobrana wartość matched value
h	m	$-0,4 \le h \le +0,4$	a ₃	m	0,048
F_y	Ν	$(5,41 \cdot 10^3 \text{ N} \cdot \text{m}^{-1}) \cdot \text{h} ^*$	a_4	m	0,195
$V_{\rm m}$	m·s ⁻¹	1,5	a_5	m	0,17
$\Delta_{ m Vm}$	m's ⁻¹	0,5	a ₇	m	0
a_0	m	0	a_8	m	0,235
a ₁	m	0,16	a_9	m	0,45
a_2	m	0,78	a ₁₀	m	0,405
a_6	m	0,57	с	N^{-1}	$4 \cdot 10^{5}$
F_Q	Ν	500	L_s	m	0,3
M _{Bs}	N [·] m [·] s ²	200	r	m	0,02; 0,026; 0,032
R_1	m	0,85	δο	rad	1,34
λ	rad	0,2618	-	-	-
بخ	rad	0,1047	-	-	-

*na podstawie Bernackiego [1981], gdzie współczynnik 5,41¹⁰³N'm⁻¹ zawiera: tg kąta nachylenia między poziomą i pionową składową oporu orki, jednostkowy opór gleby średniozwięzłej oraz współczynnik oporu dynamicznego i szerokość skiby dla danego korpusu pługa

Zadając tak określone wartości parametrów procesu pracy mechanizmu bezpiecznika do algorytmu obliczeniowego, uzyskujemy wartości siły realizowanej F_x (w przyjętych przedziałach zmienności h i r). Po podstawieniu tych wartości F_x a także wartości zadanych Fxo_{i,i} do wzoru (1) na kryterium optymalizacji, uzyskuje się wartość Θ funkcji celu. Matematyczna procedura "minimalizacji", dostępna w pakiecie Mathcad i zawierająca swój wewnętrzny algorytm poszukiwania wartości minimalnej, wspomaga poszukiwanie optymalnej wartości zdefiniowanej (1) funkcji celu Θ(h,r,X) w zakresie dopuszczalnych wartości dla podzbioru XKd, przy równoczesnym uwzględnieniu przyjętych ograniczeń. Wynikiem tak realizowanej optymalnej syntezy są wartości parametrów z podzbioru X_{Kd}, zestawione w prawej części tabeli 1. Uzyskano je dla wartości funkcji celu $\Theta = 2,22 \cdot 10^3$ N. Jest to minimalna wartość błędu średniokwadratowego pomiędzy dwiema funkcjami sił przeciążeniowych: zadaną Fxo(h,r) i realizowaną F_x(h,r,X), spełniająca równocześnie przyjęte ograniczenia. Jej graficzną ilustrację – dla średniej wartości parametru regulacji r – przedstawia rysunek 6. Analizując go można zauważyć, że największa rozbieżność pomiędzy funkcjami sił przeciążeniowych występuje dla przedziału głębokości od 0 m do 0,25 m podczas zagłębiania korpusu. Jednakże

Rys. 6. Porównanie przebiegu sił przeciążeniowych: zadanej Fxo_{i,j} i realizowanej (w wyniku optymalnej syntezy) F_x w funkcji głębokości roboczej h_i dla regulacji średniej r₁

Fig. 6. Comparison of overload forces running: a given force $Fxo_{i,j}$ and a realized force (as a result of optimal synthesis) F_x as a function of working depth h_i for mean regulation r_1

rozbieżność w tym przedziale, uwzględniając częstotliwość dyskretyzowanych wartości h_j (o czym wcześniej sygnalizowano i przedstawiono na rysunku 3), ma stosunkowo mały wpływ na wartość funkcji celu Θ . Znacznie większy wpływ mają rozbieżności (prawie nie występujące przy tak zrealizowanej optymalnej syntezie mechanizmu) wartości sił przeciążeniowych F_{xo} i F_x przy skrajnych głębokościach.

PODSUMOWANIE

W wyniku przeprowadzonej optymalnej syntezy określono wartości parametrów konstrukcyjnych procesu pracy przykładowo wybranego automatycznego mechanizmu zabezpieczającego korpus pługa przed przeciążeniem. Wartości te (tab. 1) tak zostały określone (założone dla podzbioru X_{Ks} i dobrane dla podzbioru X_{Kd}), że realizowana przez bezpiecznik siła przeciążeniowa F_x , będąca funkcją 24 różnych parametrów procesu pracy tego bezpiecznika, jest najbardziej z możliwych do uzyskania zbliżona do pożądanej przez użytkownika. Jej rzeczywisty przebieg, w funkcji głębokości roboczej h korpusu pługa i przyjętego przedziału wartości parametru regulacji r jej wartości, ilustruje rysunek 7. Dobierając wartości parametrów spełniono również przyjęte ograniczenia: zachowano niezbędny warunek uzyskania równoległości ramy korpusu pługa do powierzchni gleby podczas jej uprawy oraz uzyskano pożądaną siłę (rys. 8) na na-krętce regulującej wartość parametru regulacji r, pozwalającą na stosunkowo łatwą zmianę przez użytkownika wartości siły przeciążeniowej w zależności od warunków eksploatacji.

Prezentowana metoda doboru umożliwia również poznanie wpływu poszczególnych parametrów optymalizowanego mechanizmu bezpiecznika na jego jakość pracy. Rysunek 9 ilustruje wpływ przykładowo wybranych parametrów z podzbioru dobieranych X_{Kd} na wartość minimalizowanej funkcji celu $\Theta(h,r,X)$. Analizując ten rysunek można m.in. stwierdzić, że:

- Rys. 7. Przebieg siły przeciążeniowej realizowanej F_x w funkcji głębokości roboczej h po dobraniu wartości (tab. 1) parametrów konstrukcyjnych (m.in. a_3 , c, L_s , δ_o) dla wybranego bezpiecznika przy dwóch skrajnych wartościach parametru regulacji r: dla F_{x1} r = r_{min} ; dla F_{x2} r = r_{max}
- Fig. 7. Running of realized overload force F_x as a function of working depth h after matching (tab. 1) of constructional parameters (e. g. a_3 , c, L_s , δ_o) for a selected safety device with two extreme values of regulation parameter r: for F_{x1} r = r_{min} ; for F_{x2} r = r_{max}

- Rys. 8. Uzyskane wartości minimalnej siły F_{smin} (na nakrętce regulacyjnej) w funkcji m.in. zmiany dobranych wartości parametru regulacji r_i
- Fig. 8. Received values of minimal force F_{smin} (on an adjusting nut) as a function (among others) of variation of matched regulation parameter r_i

– przyjęta w doborze jako optymalna wartość $\Theta = 2,22 \cdot 10^3$ N nie jest wartością najmniejszą z możliwych do uzyskania. Oznacza to, że przyjęciu mniejszych wartości Θ przeszkadzają sformułowane w zadaniu ograniczenia, a w szczególności – co stwierdzono w wyniku analizy – warunek (3a) uzyskania minimalnej siły F_{smin} na nakrętce regulującej wartość parametru r

– zmiany wartości przykładowo przedstawionych parametrów z podzbioru dobieranych X_{Kd} na wartość funkcji celu $\Theta(h,r,X)$ mają charakter nieliniowy: przedziały poniżej przyjętych wartości w większym stopniu wpływają na optymalną wartość Θ (powodując jej wzrost) aniżeli przedziały powyżej przyjętych wartości. Oznacza to, że ustalając dokładności wykonawcze tych dobieranych parametrów, należy przyjąć tolerancje na "plus" (tj. na wzrost przyjętych wartości).

- Rys. 9. Wpływ wybranych parametrów ze zbioru X_{Kd} przykładowego bezpiecznika na wartość funkcji celu $\Theta(h,r,X)$: a) wpływ długości a_3 ; b) wpływ sprężystości c sprężyny; c) wpływ długości L_s sprężyny w stanie spoczynku; d) wpływ kąta δ_0 położenia ramienia a_8
- Fig. 9. Influence of selected parameters from a set X_{Kd} of a safety device on value of an objective function $\Theta(h,r,X)$: a) influence of length a_3 ; b) influence of elasticity c of a spring; c) influence of spring length L_s at a standstill; d) influence of angle δ_o of position of an arm a_8

Technica Agraria 3(1-2) 2004

- Rys. 10. Porównanie przebiegu siły przeciążeniowej realizowanej F_x w funkcji głębokości h_j dla r₁ = 0,026 m pod wpływem zmiany wybranych warunków eksploatacji: a) prędkości roboczej V_m z 1,5 m s⁻¹ dla F_{x1} do 2,5 m s⁻¹ dla F_{x2}; b) przyrostu prędkości Δ_{Vm} z 0,5 m s⁻¹ dla F_{x1} do 1,5 m s⁻¹ dla F_{x2}
- Fig. 10. Comparison of running of a realized overload force F_x as a function of depth h_j for $r_1 = 0.026$ m under the influence of change of selected using conditions: a) of working depth V_m from 1.5 m/s⁻¹ for F_{x1} to 2.5 m/s⁻¹ for F_{x2} ; b) increment of speed Δ_{Vm} from 0.5 m/s⁻¹ for F_{x1} to 1.5 m/s⁻¹ for F_{x2}

Z kolei rysunek 10 ilustruje wpływ zmiany wartości parametrów eksploatacyjnych na charakter siły przeciążeniowej F_x realizowanej przez mechanizm bezpiecznika o przyjętych (w wyniku doboru) wartościach parametrów konstrukcyjnych. Analizując go, można m.in. stwierdzić, że:

– wzrost prędkości roboczej z założonej wartości 1,5 m s⁻¹ do V_m = 2,5 m s⁻¹ powoduje istotną zmianę przebiegu realizowanej siły przeciążeniowej F_x podczas unoszenia korpusu pługa. Siła ta (F_{x2}) przyjmuje zarówno większe wartości po pierwszym etapie pracy bezpiecznika (tj. po uniesieniu korpusu na 0,03 m), jak i – przy dalszym jego unoszeniu – oczekiwany spadek wartości siły jest dużo mniejszy niż siły F_{x1} uzyskanej przy założonej prędkości V_m = 1,5 m s⁻¹. Podczas zagłębiania korpusu pługa (tj. dla głębokości h = 0–0,4 m) wspomniany wzrost prędkości roboczej praktycznie nie wpływa na przebieg realizowanej siły F_x

– wzrost przyśpieszenia pługa (w wyniku zwiększenia prędkości roboczej) w czasie procesu pracy bezpiecznika z Δ_{Vm} =0,5 m s⁻¹ do 1,5 m s⁻¹ również wpływa na przebieg realizowanej siły F_x, i to podobnie jak wyżej wspomniana prędkość robocza, ale w znacznie mniejszym stopniu.

Przedstawiona symulacyjna metoda doboru poszukiwanych wartości parametrów konstrukcyjnych, wykorzystująca optymalną syntezę fragmentu konstrukcji narzędzia uprawowego, pozwala w sposób najbardziej efektywny uzyskać postawiony cel pracy.

Doświadczalne (empiryczne) prześledzenie wpływu i dobranie optymalnych wartości dla 24 parametrów procesu pracy takiego bezpiecznika byłoby praktycznie niewykonalnym zadaniem. Jednakże warunkiem koniecznym – najczęściej najbardziej kłopotliwym – jest opracowanie modelu matematycznego optymalizowanej cechy narzędzia, odzwierciedlającego istotnie ważny dla doboru rzeczywisty jej przebieg w procesie pracy.

PIŚMIENNICTWO

Bernacki H. 1981. Teoria i konstrukcja maszyn rolniczych. T. 1, cz. I i II – Narzędzia i maszyny uprawowe. PWRiL, Warszawa, 107–116.

Findeisen W., Szymanowski J., Wierzbicki A. 1980. Teoria i metody obliczeniowe optymalizacji. PWN, Warszawa, 43–68.

Osiński Z., Wróbel J. 1982. Teoria konstrukcji maszyn. Podstawy konstrukcji maszyn. PWN, Warszawa, 141–142.

Traulsen H. 1989. Bruchschaden am Pflug können Sie verhindern. DLZ Landtech. Jg. 40, 8, 56-59.

OPTIMAL SYNTHESIS OF A MECHANISM PROTECTING A CULTIVATING TOOL FROM OVERLOAD WITH A SELECTED PLOUGH SAFETY DEVICE AS AN EXAMPLE. PART II. MINIMIZATION OF CRITERION OF OPTIMIZATION

Abstract. The aim of this work was such definition of the values of constructional parameters of work process of a selected safety device protecting a cultivating tool (e.g. plough body) from overload to be able to obtain the least difference between protecting forces: a force realized by a safety device F_x and a force expected by a user F_{xo}. The task was limited to the search for the minimal value of objective function, which described that difference and it was realized with the method of nonlinear optimization using the software package Mathcad. As a criterion of optimization, an error mean-square between functions of the mentioned forces F_x and F_{xo} in defined ranges of working depth h of a cultivating element and a regulation parameter r of the force value was assumed. To define selectively fragments of variation of objective function significant for realized process (following from rank of selection of values of overload forces) variation ranges of parameters h and r were digitized. Values of force F_{xo} were given in a table but for a force F_x a mathematical model from part I of this work was used, which among other things defined a set of parameters of work process of a safety device, which influenced its value and admissible values of the parameters. Constructional parameters were divided into two subsets: constant parameters X_{Ks} (sssumed values, following from assignment of a safety device and cultivating tool) and matched parameters X_{Kd} (matched values as a result of realized optimal synthesis). Two limitations were introduced: necessary condition of obtainment of para-uelism of a frame of a cultivating tool to soil surface during its cultivation and not large force (max 6 kN) on an adjusting nut allowing to change easily (by a user) the value of overload force according to using conditions. Algorithm of selection of desired values was given. Assumed and matched values of parameters of safety device work process were shown in a table and realization of optimal synthesis was illustrated in the work.

Keywords: cultivating tools, overload safety devices, optimization of construction, computer simulation

Zaakceptowano do druku - Accepted for print: 22.03.2004