Skip to main navigation menu Skip to main content Skip to site footer

Vol. 39 No. 2 (2023)

Articles

Effect of cannabidiol on heart rate, salivary cortisol concentration and approach time in fear tests in school horses – a pilot study

DOI: https://doi.org/10.24326/jasbb.2023.5225
Submitted: June 19, 2023
Published: 2023-12-15

Abstract

The aim of the study was to assess the effect of cannabidiol (CBD) on the heart rate, salivary cortisol concentration and approach time of horses subjected to fear tests. The study involved 20 Polish sport horses, divided into a research group and a control group. Research group was given 100 mg of CBD daily for 21 days. Both groups were subjected to two fear tests in three studies: before the start of supplementation, on day 10th and 11th and on day 20th and 21st of supplementation. Heart rate and saliva sampling to determine salivary cortisol levels were performed before and immediately after each fear test for both groups. In addition, the approach time to both objects was measured in both fear tests. The study showed no statistically significant difference in cortisol concentration and heart rate between the research group and the control group. There was statistically significant differences between the groups in approach time in three studies. Results of the study didn’t prove the anti-anxiety effect of CBD on the horse's body, but shortening the approach time to the object gives grounds for further research on the anti-anxiety effect of CBD in horses.

References

  1. Carroll J., Murphy C.J., Neitz M., Ver Hoeve J.N., Neitz, J., 2001. Photopigment basis for dichromatic color vision in the horse. J. Vis. 1, 80–87. https://doi.org/10.1167/1.2.2 DOI: https://doi.org/10.1167/1.2.2
  2. Corsetti S., Borruso S., Malandrucco L., Spallucci V., Maragliano L., Perino R., D’Agostino P., Natoli E., 2021. Cannabis sativa L. may reduce aggressive behaviour towards humans in shelter dogs. Sci. Rep. 11, 2773. https://doi.org/10.1038/s41598-021-82439-2 DOI: https://doi.org/10.1038/s41598-021-82439-2
  3. Cota D., 2007. CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab. Res. Rev. 23, 507–517. https://doi.org/10.1002/dmrr.764 DOI: https://doi.org/10.1002/dmrr.764
  4. Crippa J.A.S., Crippa A.C.S., Hallak J.E.C., Martín-Santos R., Zuardi A.W., 2016. 19-THC intoxication by cannabidiol-enriched cannabis extract in two children with refractory epilepsy: full remission after switching to purified cannabidiol. Front. Pharmacol. 7, 359. https://doi.org/10.3389/fphar.2016.00359 DOI: https://doi.org/10.3389/fphar.2016.00359
  5. Deiana S., Watanabe A., Yamasaki Y. Amada N., Arthur M., Fleming S., Woodcock H., Dorward P., Pigliacampo B., Close S., Platt B., Riedel G., 2012. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology 219, 859–873. https://doi.org/10.1007/s00213-011-2415-0 DOI: https://doi.org/10.1007/s00213-011-2415-0
  6. Draeger A.L., Thomas E.P., Jones K.A., Davis A.J., Porr C.A.S., 2021. The effects of pelleted cannabidiol supplementation on heart rate and reaction scores in horses. J. Vet. Behav. 46, 97–100. https://doi.org/10.3390/ani13020245 DOI: https://doi.org/10.1016/j.jveb.2021.09.003
  7. Gardner E.L., 2005. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol. Biochem. Behav. 81, 263–284. https://doi.org/10.1016/j.pbb.2005.01.032 DOI: https://doi.org/10.1016/j.pbb.2005.01.032
  8. Goodwin D., 2007. Horse behaviour: evolution, domestication and feralisation. W: N. Waran (red.), The welfare of horses. Animal Welfare, t. 1. Springer, Dordrecht, 1–18. https://doi.org/10.1007/978-0-306-48215-1_1 DOI: https://doi.org/10.1007/978-0-306-48215-1_1
  9. Harewood E.J., McGowan C.M., 2005. Behavioral and physiological responses to stabling in naive horses. J. Equine Vet. Sci. 25, 164–170. https://doi.org/10.1016/j.jevs.2005.03.008 DOI: https://doi.org/10.1016/j.jevs.2005.03.008
  10. Hill E., Bryne W.L., 2021. 135 safety and behavioural effects of cannabidiol applied as an oral administration in horses. J. Equine Vet. Sci. 100, 103598. https://doi.org/10.1016/j.jevs.2021.103598 DOI: https://doi.org/10.1016/j.jevs.2021.103598
  11. Iffland K., Grotenhermen F., 2017. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2, 139–154. https://doi.org/10.1089/can.2016.0034 DOI: https://doi.org/10.1089/can.2016.0034
  12. Jamshidi N., Taylor D.A., 2001. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 134, 1151–1154. https://doi.org/10.1038/sj.bjp.0704379 DOI: https://doi.org/10.1038/sj.bjp.0704379
  13. Jean-Gilles L., Braitch M., Latif M.L., Edwards L.J., Robins R.A., Tanasescu R., 2015. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells. Acta Physiol. 214, 63–74. https://doi.org/10.1111/apha.12474 DOI: https://doi.org/10.1111/apha.12474
  14. Jones K., Thomas E., Draeger A., Porr S., 2019. Cannibidiol (CBD) supplementation in horses: a pilot study. Huston School of Agriculture, Murray State University.
  15. Joshi N., Onaivi E.S., 2019. Endocannabinoid system components: overview DOI: https://doi.org/10.1007/978-3-030-21737-2_1
  16. and tissue distribution. Adv. Exp. Med. Biol. 1162, 1–12. https://doi.org/10.1007/978-3-030-21737-2_1 DOI: https://doi.org/10.1007/978-3-030-21737-2_1
  17. Luedke C., Wilhelm T., 2021. Cannabinoids in equine medicine. W: S. Cital., K. Kramer, L. Hughston, J.S. Gaynor (red.), Cannabis therapy in veterinary medicine. Springer, Cham, 265–305. https://doi.org/10.1007/978-3-030-68317-7_12 DOI: https://doi.org/10.1007/978-3-030-68317-7_12
  18. Moons C.P.H., Laughlin K., Zanella A.J., 2005. Effects of short-term maternal separations on weaning stress in foals. Appl. Anim. Behav. Sci. 91, 321–335. https://doi.org/10.1016/j.applanim.2004.10.007 DOI: https://doi.org/10.1016/j.applanim.2004.10.007
  19. Pagotto U., Marsicano G., Cota D., Lutz B., Pasquali R., 2006. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 27, 73–100. https://doi.org/10.1210/er.2005-0009 DOI: https://doi.org/10.1210/er.2005-0009
  20. Peeters M., Sulon J., Serteyn D., Vandeheede M., 2010. Assessment of stress level in horses during competition using salivary cortisol: preliminary studies. J. Vet. Behav. Clin. Appl. Res. 5, 216. https://doi.org/10.1016/j.jveb.2009.10.043 DOI: https://doi.org/10.1016/j.jveb.2009.10.043
  21. Rietmann T.R., Stuart A.E.A., Bernasconi P., Stauffacher M., Auer J.A., Weishaupt M.A., 2004. Assessment of mental stress in warmblood horses: heart rate variability in comparison to heart rate and selected behavioural parameters. Appl. Anim. Behav. Sci. 88, 121–136. https://doi.org/10.1016/j.applanim.2004.02.016 DOI: https://doi.org/10.1016/j.applanim.2004.02.016
  22. Russo E.B., Burnett A., Hall B., Parker K.K., 2005. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem. Res. 30, 1037–43. https://doi.org/10.1007/s11064-005-6978-1 DOI: https://doi.org/10.1007/s11064-005-6978-1
  23. Schiavon A.P, Bonato J.M., Milani H., Guimarães F.S., Weffort de Oliveira R.M., 2016. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuro. Biol. Psychiatry 4, 27–34. https://doi.org/10.1016/j.pnpbp.2015.06.017 DOI: https://doi.org/10.1016/j.pnpbp.2015.06.017
  24. Schmidt A., Möstl E., Wehnert C., Aurich J., Müller J., Aurich C., 2010. Cortisol release and heart rate variability in horses during road transport. Horm. Behav. 57, 209–215. https://doi.org/10.1016/j.yhbeh.2009.11.003 DOI: https://doi.org/10.1016/j.yhbeh.2009.11.003
  25. Shirtcliff E.A., Buck R.L., Laughlin M.J., Hart T., Cole C.R., Slowey P.D., 2015. Salivary cortisol results obtainable within minutes of sample collection correspond with traditional immunoassays. Clin. Ther. 37(3), 505–514. https://doi.org/10.1016/j.clinthera.2015.02.014 DOI: https://doi.org/10.1016/j.clinthera.2015.02.014
  26. Silver R.J., 2019. The endocannabinoid system of animals. Animals 9, 686. https://doi.org/10.3390/ani9090686 DOI: https://doi.org/10.3390/ani9090686
  27. Soroko M., Howell K., Zwyrzykowska A., Dudek K., Zielińska P., Kupczyński K., 2016. Maximum eye temperature in the assessment of training in racehorses: correlations with salivary cortisol concentration, rectal temperature, and heart rate. J. Equine Vet. Sci. 45, 39–45. https://doi.org/10.1016/j.jevs.2016.06.005 DOI: https://doi.org/10.1016/j.jevs.2016.06.005
  28. Weibel L., 2003. Methodological guidelines for the use of salivary cortisol as biological marker of stress. Presse Med. 32, 845–851.
  29. Zeitler-Feicht M.H., 2014. Zachowania koni, przyczyny, terapia i profilaktyka. Świadome Jeździectwo, Warszawa.
  30. Zieba J., Sinclair D., Sebree T., Bonn-Miller M., Gutterman D., Siegel S., Karl T., 2019. Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol. Biochem. Behav. 181, 93–100. 10.1016/j.pbb.2019.05.002 DOI: https://doi.org/10.1016/j.pbb.2019.05.002
  31. Zuardi A.W., 2006. History of cannabis as a medicine: a review. Braz. J. Psychiatry 28, 153–157. https://doi.org/10.1590/s1516-44462006000200015 DOI: https://doi.org/10.1590/S1516-44462006000200015

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.