Skip to main navigation menu Skip to main content Skip to site footer

Vol. 28 No. 3 (2018)

Articles

Effect of mycorrhiza on the diversity and structure of the population of saprotrophic fungi occurring in the rhizosphere of tomato plants

DOI: https://doi.org/10.24326/ah.2018.3.2
Submitted: November 28, 2018
Published: 2018-09-27

Abstract

Arbuscular mycorrhizal fungi (AMF) can be used for protection and stimulation of plant growth. The presence of a symbiont in the roots of plants causes a direct and indirect effect on rhizosphere microorganisms. The aim of studies conducted in 2015–2017 was to estimate the effect of endomycorrhizal fungi such as Claroideoglomus etunicatum and Rhizophagus intraradices on the population structure of saprotrophic fungi colonizing the rhizosphere of tomato plants cultivated in a plastic tunnel. The experiment was conducted at an ecological farm in Grądy (Lublin district), where the study object were tomato plants (‘Antalya F1’ – a Turkish hybrid) inoculated by two species of mycorrhizal fungi. The studies showed that AMF had a positive effect on biodiversity of the studied population and on increasing numbers of saprotrophic fungi such as Trichoderma spp., Penicillium spp., and Mucor spp. in the rhizosphere of tomato plant comparing to the control. The mycological analysis of the rhizosphere showed that C. etunicatum has a greater impact on the growth of saprotrophic fungi, especially Trichoderma spp., in tomato rhizosphere than R. intraradices.

References

  1. Ahmed S., Bashir A., Saleem H., Saadia M., Jamil A., 2009. Production and purification of cellu-lose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak. J. Bot. 41(3), 1411–1419.
  2. Augé R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. My-corrhiza 11(1), 3–42.
  3. Brundrett M.C., 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154(2), 275–304.
  4. Datnoff L.E., Nemec S., Pernezny K., 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Control 5, 427–431, DOI: 10.24326/asphc.2017.5.9.
  5. Dubsky M., Sramek F., Vosatka M. 2002. Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma har-zianum. Rostl. Vyroba 48(1), 63–68.
  6. Harman G.E., 2000. Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis. 84(4), 377–393.
  7. Hodge A., Helgason T., Fitter A.H., 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3(4), 267–273.
  8. Jamiołkowska A., Księżniak A., Hetman B., Kopacki M., Skwaryło-Bednarz B., Gałązka A., Tha-noon A.H., 2017. Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Sci. Pol., Hortorum Cultus 16(5), 89–95, DOI: 10.24326/asphc.2017.5.9
  9. Jamiołkowska A., Thanoon A.H., 2016. Diversity and biotic activity of fungi colonizing pumpkin plants (Cucurbita pepo L.) grown in the field. EJPAU, Horticulture, vol. 19, 4; http://www.ejpau.media.pl/volume19/issue4/art-11.html
  10. Johnson N.C., Wilson G.W.T., Bowker M.A., Wilson J.A., Miller R.A., 2010. Resource limita-tionis a driver of local adaptation in mycorrhizal symbioses. Proc. Nat. Acad. Sci. USA 107(5), 2093–2098.
  11. Joseph P.J., Sivaprasad P., 2012. The potential of arbuscular mycorrhizal associations for biocontrol of soilborne diseases. In: R.K. Upadhyay, K.G. Mukerij, B. Chamola (eds), Biocontrol potential and its exploitation in sustainable agriculture: crop diseases, weeds and nematodes, Springer Science & Buissnes Media, New York, 139–153.
  12. Lenc L., Kwaśna H., Jeske M., Jończyk K., Sadowski C., 2016. Fungal pathogens and antagonists in root-soil zone in organic and integrated systems of potato production. J. Plant Prot. Res. 56(2), 167–177.
  13. Mańka K. 1974. Zbiorowiska grzybów jako kryterium oceny wpływu środowiska na choroby roślin. Zesz. Probl. Post. Roln. 160, 9–23.
  14. Mwangi M.W., Monda E.O., Okoth S.A., Jefwa J.M., 2011. Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Braz. J. Microbiol. 42(2), 508–513.
  15. Nicoletti R., De Stefano M., 2012. Penicillium restrictum as an Antagonist of Plant Pathogenic Fungi. Dynamic Biochem. Process Biotechnol. Mol. Biol. 6(2), 61–69.
  16. Ranasingh N., Saurabh A., Nedunchezhiyan M., 2006. Use of Trichoderma in disease management. Orissa Rev. 63(2–3), 68–70.
  17. Saldajeno M.G., Hyakumachi M., 2011. Arbuscular mycorrhizal interactions with Rhizobacteria or saprotrophic fungi and its implications to biological control of plant diseases from. In: S.M. Fulton (ed.), Mycorrhizal Fungi: Soil, Agriculture and Environmental Implications. Nova Science Publishers, Hauppauge, 187–212.
  18. Smith S.E., Read D.J., 2008. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: S.E. Smith, D.J. Read, Mycorrhizal Symbiosis, 3rd ed., Ac-ademic Press, London,145–189.
  19. Šrámek F., Dubský M., Vosatka M., 2000. Effect of arbuscular mycorrhizal fungi and Trichoderma harzianum on three species of balcony plants. Rostl. Výroba, 46(3), 127–131.
  20. Tahat M.M., Kumaruzaman S., Othman R., 2010. Mycorrhizal fungi as a biocontrol agent. Plant Pathol. J. 9(4), 198–207.
  21. Wu Q.S., Zou Y.N., Xia R.X., Wang M.Y., 2007. Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot. Stud. 48(2), 147–154.
  22. Vàzquez M., Cesar S., Azcon R., Barea J.M., 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their ef-fects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15, 261–272.
  23. www.indexfungorum.org

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.