Skip to main navigation menu Skip to main content Skip to site footer

Vol. 12 No. 1-2 (2013)

Artykuły

The effect of pressure on efficiency of chosen soft wood sawdust

DOI: https://doi.org/10.24326/aspta.2013.1-2.4
Submitted: April 29, 2022
Published: 2013-06-30

Abstract

This paper presents the investigation results of specific piston pressure (45 to 113 MPa) and the addition of a calcium lignosulphonate binder effect on the compaction parameters of white birch sawdust. The experiments were performed with the use of the ZWICK Z020/TN2S universal strength tester and a closed compression assembly. An increase in pressure led to an increase in material density in the compression chamber and agglomerate density (by 18.5% on average), and it more than doubled the mechanical strength of the agglomerate. Higher compaction pressure increased the demand for compaction energy by 108% on average. The addition of binder increased the agglomerate density and the mechanical strength of agglomerate by 250% on average.

References

  1. Hejft R., 2002. Ciśnieniowa aglomeracja materiałów roślinnych. Polit. Białostocka. Wyd. i Zakł. Poligrafii Inst. Technol. Eksploatacji w Radomiu.
  2. Hejft R., Obidzński S., 2012. The pressure agglomeration of the plant materials – the technological and technical innovations. part 1. J. Res. Appl. Agric. Eng. 57(1), 63–65.
  3. Kulig R., Skonecki S., Łysiak G., 2012. The effect of binder addition on the parameters of compacted POPLAR wood sawdust. Teka. Commission of Motorization and Energetics in Agriculture 12, 87–91.
  4. Laskowski J., Skonecki S., 2001. Badania procesów aglomerowania surowców paszowych – aspekt metodyczny. Inżynieria Roln. 2(22), 187–193.
  5. Li Y., Liu H., 2000. High pressure densification of wood residues to form an upgraded fuel. Biom. Bioen. 19(3), 177–186.
  6. Li Y., Wu D., Zhang J., Chang L., Wu D., Fang Z., Shi Y., 2000. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol. 113, 176–184.
  7. MacMahon M.J., Payne J.D., 1991. The pelleting handbook. Borregaard Lignotech, Sarpsborg Norway.
  8. Mani S., Tabil L.G., Sokhansanj S., 2003. An overview of compaction of biomass grinds. Powder Handling Process. 15, 160–168.
  9. Mani S., Tabil L.G., Sokhansanj S., 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biom. Bioen. 30(7), 648–654.
  10. Restolho J.A., Prates A., de Pinho M.N., Afonso M.D., 2009. Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biom. Bioen. 33, 1558–1566.
  11. Relova I., Vignote S., León M.A., Ambrosio Y., 2009. Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biom. Bioen. 33, 1351–1357.
  12. Ruiz G., Ortiz M., Pandolfi A., 2000. Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int. J. Numer. Meth. Engng. 48, 963–994.
  13. Sahoo S., Seydibeyo M.O., Mohanty A.K., M. Misra M., 2011. Characterization of industrial lignins for their utilization in future value added applications. Biom. Bioen. 35, 4230–4237.
  14. Skonecki S., Kulig R., Potręć M., 2011. Ciśnieniowe zagęszczanie trocin sosnowych i topolowych-parametry procesu i jakość aglomeratu. Acta Agroph. 18(1), 123–128.
  15. Sobczyk W., Kowalska A., 2012. The techniques of producing energy from biomass. Teka. Commission of Motorization and Energetics in Agriculture 12(1), 257–261.
  16. Wood J.F., 1987: The functional properties of feed raw materials and their effect on the production and quality of feed pellets. Anim. Feed Sci. Tech. 18, 1–17.
  17. Van Dam J.E.G., Van den Oever M.J.A., Teunissen W., Keijsers E.R.P., Peralta A.G., 2004.
  18. Process for production of high density/high performance binderless boards from whole coconut husk. Part 1: lignin as intrinsic thermosetting binder resin. Industr. Crops Prod. 19, 207–216.

Downloads

Download data is not yet available.