Skip to main navigation menu Skip to main content Skip to site footer

Vol. 4 No. 1 (2005)

Artykuły

Identification of the mathematical models of viscoelastic biological materials using Prony method

DOI: https://doi.org/10.24326/aspta.2005.1.5
Submitted: February 4, 2023
Published: 2005-06-30

Abstract

An algorithm, based on Prony approach, for identification of the relaxation modulus of linear viscoelastic materials described by Maxwell model is presented. It is proved, that if the real relaxation modulus is four-element Maxwell and the measurements are not corrupted by noise, then the identifiability of the real parameters of the relaxation modulus is guaranteed. It is also proved that all the computational tasks solved in the identification scheme are well-posed in the Hadamard sense. Next the necessary and sufficient conditions for the applicability of the algorithm to identifying the four-parameter Maxwell models are derived. The effectiveness of the method is demonstrated through the computation of the relaxation function of the beet sugar root samples in the state of the uniaxial strain. The second example using Lanczos data is also enclosed.

References

  1. Aczél J., 1966. Lectures on functional equations and their applications. Academic Press New York.
  2. Barrodale, I., Oleski, D.D., 1981. Exponential approximation using Prony's method. In: Baker, C.T.H., Phillips, C., The Numerical Solution of Nonlinear Problems, 258–269. DOI: https://doi.org/10.1007/BFb0090685
  3. Brooks J.W., Maier M.W., 1996. Application of system identification and neural networks to classification of land mines. EUREL Int. Conf. The Detection of Abandoned Land Mines: A Humanitarian Imperative Seeking a Technical Solution. Conf. Publ. 431, 46–50. DOI: https://doi.org/10.1049/cp:19961077
  4. Bubnicki Z., 1980. Identification of Control Plants. PWN Warszawa, Elsevier Amsterdam.
  5. Bzowska-Bakalarz M. 1994. Właściwości mechaniczne korzeni buraków cukrowych. Rozpr. Nauk. AR w Lublinie, 166.
  6. Chen P., Chen S., 1986. Stress relaxation functions of apple under high loading rates. Transaction of the ASAE. 29, 1754–1759. DOI: https://doi.org/10.13031/2013.30384
  7. Derski W., Ziemba S., 1968. Analiza modeli reologicznych. PWN Warszawa.
  8. Evans J. W., Gragg W.B., LeVeque R. J., 1980. On Least-Squares Exponential Sum Approximation with Positive Coefficients. Mathematics of Computations 34(149), 203–211. DOI: https://doi.org/10.1090/S0025-5718-1980-0551298-6
  9. Fargues M.P., Cristi R., Vanderkamp M.M., 1993. Modeling and classification of biological signals using least squares Prony-SVD AR modeling. Proc. of the 36th Midwest Symp. on Circuits and Systems. 16-18 Aug. 1993. 1, 445–448.
  10. Farrokhi M., Isik C., 1994. Application of Prony signal analysis to recurrent neural networks. Proc. IEEE World Congress on Computational Intelligence and IEEE Int. Conf. on Neural Networks. 27 June – 2 July 1994, 1, 413–418. DOI: https://doi.org/10.1109/ICNN.1994.374198
  11. Flügge W., 1967. Viscoelasticity. Blaisdell Publishing Company Waltham, Toronto, London.
  12. Gołacki K., 1998. Charakterystyki lepkosprężyste korzeni marchwi w szerokim zakresie prędkości obciążeń mechanicznych. Rozpr. Nauk. AR w Lublinie. 216.
  13. Gołacki K., 2002. Lepkosprężyste charakterystyki korzeni buraków cukrowych. Acta Agroph. 78, 37–49.
  14. Gutenbaum J., 2003. Modelowanie matematyczne systemów. EXIT Warszawa.
  15. Hasanovic A., Feliachi A., Bhatt N.B., DeGroff A.G., 2004. Practical robust PSS design through identification of low-order transfer functions. IEEE Trans. on Power Systems 19(3), 1492–1500. DOI: https://doi.org/10.1109/TPWRS.2004.831679
  16. Hildebrand F. B., 1956. Introduction to Numerical Analysis. McGraw-Hill New York.
  17. Kammler D. W., 1979. Least squares approximation of completely monotonic functions by sums of exponentials. SIAM J. Numer. Anal. 16(5), 801–818. DOI: https://doi.org/10.1137/0716060
  18. Kiełbasiński A., Schwetlick H., 1994. Numeryczna algebra liniowa. Wprowadzenie do obliczeń zautomatyzowanych. WNT, Warszawa.
  19. Kundu D., Mitra A., 1998. Estimating the parameters of the linear compartment model. J. Statist. Planning Infer. 70, 317–334. DOI: https://doi.org/10.1016/S0378-3758(97)00190-0
  20. Lanczos C., 1956. Applied Analysis. Prentice Hall Englewood Clifs.
  21. Leśmanowicz L., Łoś J., 1972. Zbiór zadań z algebry. PWN, Warszawa.
  22. Lu J., Nehrir M.H., Pierre D.A., 2001. A fuzzy logic-based self tuning power system stabilizer optimized with a genetic algorithm. Electr. Power Syst. Res. 60, 77–83. DOI: https://doi.org/10.1016/S0378-7796(01)00170-5
  23. Osborne, M. R., 1975. Some special nonlinear least squares problems. SIAM J. Num. Anal. 12, 571–592. DOI: https://doi.org/10.1137/0712044
  24. Osborne, M. R., Smyth, G. K., 1995. A modified Prony algorithm for fitting sums of exponential functions. SIAM J. Sci. Comput. 16, 119–138. DOI: https://doi.org/10.1137/0916008
  25. Ouibrahim H., 1989. Prony, Pisarenko, and the matrix pencil: a unified presentation. IEEE Transact. Acoust., Speech and Signal Proc. 37(1), 133–134. DOI: https://doi.org/10.1109/29.17513
  26. Petersson J., Holmström K., 1998. Initial values for two-classes of exponential sum least squares fitting problems. Research Report IMa-TOM-1998-07. Mälardalen University, Sweden.
  27. Pierre D.A., Trudnowski D.J., Hauer J.F., 1992. Identifying linear reduced-order models for systems with arbitrary initial conditions using Prony signal analysis. IEEE Trans. on Automatic Control 37 (6), 831–835. DOI: https://doi.org/10.1109/9.256344
  28. Prony G. R., 1795. Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures. Journal de l'École Polytechnique 1(22), 24–76.
  29. Rao M. A., 1999. Rheology of Fluid and Semisolid Foods. Principles and Applications. Aspen Publishers, Inc. Gaithersburg, Maryland.
  30. Ribeiro M. P., Ewins D. J., Robb D. A., 2003. Non-Stationary Analysis and Noise Filtering Using a Technique Extended from the Original Prony Method. Mech. Syst. Signal Proc. 17(3), 533–549. DOI: https://doi.org/10.1006/mssp.2001.1399
  31. Ruhe A., 1980. Fitting empirical data by positive sums of exponentials. SIAM J. Sci. Stat. Comput. 1(4), 481–498. DOI: https://doi.org/10.1137/0901035
  32. Stankiewicz A., Gołacki K., 2004. Algorytm identyfikacji zmiennych w czasie modułów odkształcenia postaciowego i objętościowego roślinnych materiałów lepkosprężystych. Acta Sci. Pol., Technica Agraria 3(1–2), 79–95. DOI: https://doi.org/10.24326/aspta.2004.1-2.8
  33. Street A.M., Lukama L., Edwards D.J.,2000. Radio imaging using SVD Prony. Electr. Letters 36 (13), 1150–1152. DOI: https://doi.org/10.1049/el:20000803
  34. Szi-Wen C., 2000. A two-stage discrimination of cardiac arrhythmias using a total least squares-based Prony modeling algorithm. IEEE Tran. on Biomedical Engin. 47(10), 1317–1327. DOI: https://doi.org/10.1109/10.871404
  35. Tawfik M.M., Morcos M.M., 2001. Prony application for locating faults on loop systems. IEEE Power Engineering Review. 21(8), 41–43. DOI: https://doi.org/10.1109/39.948256
  36. Trudnowski D.J., Johnson J.M., Hauer J.F., 1998. SIMO system identification from measured ringdowns. Proc. of the American Control Conference. Philadelphia, 5, 2968–2972. DOI: https://doi.org/10.1109/ACC.1998.688402
  37. Varah J. M., 1985. On fitting exponentials by nonlinear least squares. SIAM J. Sci. Stat. Comput. 6 (1), 30–44. DOI: https://doi.org/10.1137/0906003
  38. Younan N.H., 2000. Radar target identification via a combined E-pulse/SVD-Prony method. The Record of the IEEE 2000 International Radar Conference, 7–12 May 2000, 799–803.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.