Skip to main navigation menu Skip to main content Skip to site footer

Vol. 14 No. 1-2 (2015)

Artykuły

ESTIMATION OF THE EFFECT OF MAGNETIC AND ELECTRIC FIELD AND MAGNETICALLY TREATED WATER ON THE COURSE OF GERMINATION OF SEEDS OF THURINGIAN MALLOW (Lavatera thuringiaca L.)

Submitted: June 29, 2020
Published: 2020-06-29

Abstract

The paper presents the results of germination of seeds of Thuringian Mallow stimulated with an alternating magnetic field, constant or variable electric field and magnetically treated water. The research was conducted for ongoing measurement series of
21 days on the parent seeds and crop seeds of the 1st generation. Each sample consisted of
100 seeds. After 10 days, germination energy of tested seeds was determined in accordance with the standards of germination. The results demonstrate a clear positive effects of
alternating electric field, a small positive impact of a constant electric field and magnetically treated water and the negative impact of alternating magnetic field on the germination of parent seeds of Thuringian Mallow for both: germination energy and germination
capacity. In the case of the 1st generation seeds, a substantial positive effect of the alternating electric field (about 26%) on parent seeds was observed as well as on the 1st generation seeds. In that case, the positive impact of all the applied physical methods on germination energy as well as germination capacity was observed. Statistically significant differences at P ≥ 0.05 were observed only for the treatment with the alternating electric field.

References

  1. Amiri, M.C., Dadkhah, A.A. (2006). On reduction in the surface tension of water due to magnetic
  2. treatment. Colloids and Surfaces A: Physicochem. Eng. Asp., 278, 252-255.
  3. Anzin, L.A., Shmigel, V.N., Zimukov, N.A. (1983). Podwyższenie jakości materiału siewnego
  4. pod wpływem pola elektrostatycznego (ros.) Selskohoz. Biologia Moskwa 11, 44–45.
  5. Biryukov, A.S., Gavrikov, V.F, Nikiforova, L.O., Shcheglov, V.A. (2005). New physical methods
  6. of disinfection of water. J. Russ. Laser Res., 26, 1, 13–25.
  7. Cakmak, T., Cakmak, Z.E., Dumlupinar, R., Tekinay, T. (2012). Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field.
  8. J. Plant Physiol., 169, 1066–1073.
  9. Cho. T.I., Lee, S.H. (2005). Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers. 2005. Internat. Comm. Heat Mass Trans., 32, 1–9.
  10. Ciupak, A., Gładyszewska, B., Pietruszewski, S. (2006). Wpływ stymulacji laserowej i temperatury na proces kiełkowania nasion gryki odmiany Kora. Fragm. Agronom., 1, 23–35.
  11. Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity?
  12. Ann. Res. Rev. Biol., 4 (6), 886–896.
  13. Gabrielli, C., Jaouhari, R., Maurin, G., Keddam, M. (2001). Magnetic water treatment for scale
  14. prevention. Water Res., 35, 3, 3249–3259.
  15. Galland, P., Pazur, A. (2005). Magnetoreception in plants. J. Plant Res., 118, 371–389.
  16. Iriondo, J.M., Perez, C. (1996). Somaclonal variation in Lavatera Species. Biotech. Agricult.
  17. Forest., 36, 280–295.
  18. International Rules for Seed Testing, ISTA (2004).
  19. K. Kornarzyński, M. Budzeń, A. Sujak
  20. _____________________________________________________________________________________________________________________________________________
  21. Acta Sci. Pol.
  22. Kopcewicz, J., Lewak, S. (2002). Fizjologia roślin. Wyd. Nauk. PWN, Warszawa.
  23. Kornarzyński, K., Łacek, R. (2006). Wpływ pola magnetycznego i elektrycznego na kiełkowanie
  24. nasion wybranych roślin kwiatowych. Inż. Roln., 5(80), 305-312.
  25. Kornarzyński, K., Pietruszewski, S. (2008). Wpływ zmiennego pola magnetycznego na kiełkowanie nasion o niskiej zdolności kiełkowania. Acta Agroph.,11(2), 429–435.
  26. Kornarzyński, K., Pietruszewski, S. (2011). Wpływ wody uzdatnianej magnetycznie na kiełkowanie nasion grochu i łubinu. Acta Agroph., 192, 18(1), 101–111.
  27. Krawiec, M., Dziwulska-Hunek, A., Kornarzyński, K., Palonka, S. (2012). Wpływ wybranych
  28. czynników fizycznych na kiełkowanie nasion rzodkiewki (Raphanus Sativus L.). Acta Agroph., 19(4), 737–748.
  29. Krawiec, M., Kornarzyński, K., Palonka, S., Kapłan, M., Baryła, P., Kiczorowski, P. (2013). Does
  30. the magnetic field improve the quality of radish seeds? Acta Sci. Pol., Hort. Cult., 12(6),
  31. –102.
  32. Laghetti, G., Perrino, P., Hammer, K. (1998). Presence, history and uses of Lavatera arborea L.
  33. (Malvaceae) on Linosa Island (Italy). Not. Econ. Plants Econ. Bot., 52(1), 107–108.
  34. Lee, S.H., Jeon, S.I., Kim, Y.S., Lee, S.K. (2013). Changes in the electrical conductivity, infrared
  35. absorption, and surface tension of partially digested and magnetically-treated water. J. Molec.
  36. Liq., 187, 230–237.
  37. Matwijczuk, A., Kornarzynski, K., Pietruszewski, S. (2012). Effect of magnetic field on seed
  38. germination and seedlings growth of sunflower. Internat. Agroph., 26(3), 271–278.
  39. Piacentini, M.P., Fraternale, D., Piatti, E., Ricci, D., Vetrano, F., Dacha, M., Accorsi, A. (2001).
  40. Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields. Plant Sci., 161, 45–53.
  41. Pietruszewski, S., Kornarzyński, K. (2002). Technika wspomagania kiełkowania nasion pomidorów przy użyciu pola elektrycznego oraz modelowanie tego procesu z wykorzystaniem krzywej logistycznej. Acta Sci. Pol. Techn. Agr., 1 (1), 83-88.
  42. PN-R-65950 (1994). Materiał siewny. Metody badania nasion.
  43. Presman, A.S. (1971). Pola elektromagnetyczne a żywa przyroda. PWN, Warszawa.
  44. Prokop, M., Pietruszewski, S., Kornarzyński, K. (2002). Wstępne badania wpływu zmiennych pól
  45. magnetycznych i elektrycznych na kiełkowanie oraz cechy mechaniczne korzeni rzodkiewki
  46. i rzodkwi. Acta Agroph., 62, 83–94.
  47. Ray M.F. (1995). Systematics of Lavatera and Malva (Malvaceae, Malveae) – a new perspective.
  48. Plant Syst. Evol. J., 198, 29-53.
  49. Selim, A.F.H., El-Nady, M.F. (2011). Physio-anatomical responses of drought stressed tomato
  50. plants to magnetic field. Acta Astron., 69, 387–396.
  51. Staszewski, Z., Staszewska, U. (1994). Thuringian Mallow (Lavatera thuringiaca L.) – an alternative crop for marginal conditions and wasted lands. In: Breeding Fodder Crops for marginal
  52. Conditions, Rognli O. A., Solberg E., Schjeldrup I. (eds). Springer – Science + Business Media B.V., 93–94.
  53. Strasak, L., Vetterl, V., Smarda, J. (2002). Effects of low – frequency magnetic fields on bacteria
  54. Escherichia coli. Bioelectrochemistry, 55, 1–2, 161–164.
  55. Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgar. J. Plant Physiol., Spec. Iss., 179–186.
  56. Vazquez-Tello, A., Hidaka, M., Uozumi, T. (1995). Somatic embryogenesis and plant regeneration from isolated protoplasts of Lavatera thuringiaca L. Plant Cell Tiss. Organ Cult., 40,
  57. –177.

Downloads

Download data is not yet available.