Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 3 (2022)

Artykuły

Zróżnicowanie genetyczne i zmienność zawartości białka surowego obiecujących genotypów pszenicy (Triticum aestivum L.) do hodowli w Albanii

DOI: https://doi.org/10.24326/as.2022.3.6
Przesłane: 27 czerwca 2022
Opublikowane: 28-10-2022

Abstrakt

The genetic diversity and variation in crude protein content among eleven wheat genotypes, comprising three elite local genotypes and eight wheat genotypes of foreign origin were investigated in the present study. Variability was evidenced in grain protein content estimated by biuret test, it ranged from 9.5 to 13.9% with mean of 11.58%. Comparative analysis between local and introduced wheat genotypes revealed that the local genotypes had lower protein content than those of foreign origin. Fourteen polymorphic RAPD markers were used to assess genetic diversity among selected wheat varieties. The mean similarity among wheat genotypes was 67%. Genetic similarity among local wheat varieties was higher (83%) than among those of foreign origin (66%). The wheat genotypes were grouped into two main clusters on UPGMA dendrogram constructed based on Dice similarity coefficients. A clear clustering of genotypes according to the origin was
observed. This clustering was also supported by principal coordinate analysis (PCoA) results. There was no observed clustering based on the protein content. The data revealed that local wheat genetic had narrow genetic diversity, however the wheat genotypes of foreign origin constitute a promising material to be employed in breeding programs aiming the increase of wheat protein content and genetic diversity.

Bibliografia

  1. Abdellatif K.F., Abouzeid M., 2011. Assessment of genetic diversity of Mediterranean bread wheat using Randomly Amplified Polymorphic DNA (RAPD) markers. J. Genet. Eng. Biotechnol. 9(2), 157–163. https://doi.org/10.1016/j.jgeb.2011.10.002 DOI: https://doi.org/10.1016/j.jgeb.2011.10.002
  2. Al-Kaab D.H., Hamdallah M.SH., Deweikat H., Al-Saeddi N.J., 2016. Estimation of the degree of diversity for some Iraqi wheat varieties through ISSR, SRAP and RAPD markers. Am. J. Exp. Agric. 11 (3), 1–11. DOI: https://doi.org/10.9734/AJEA/2016/20371
  3. Botstein D., White R.L., Skolnick M., Davis R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314–331.
  4. Chesnokov Yu.V., Artemyeva A.M., 2015. Evaluation of the measure of polymorphism information of genetic diversity. Agric. Biol. 50(5), 571–578, https://doi.org/10.15389/agrobiology.2015.5.571eng DOI: https://doi.org/10.15389/agrobiology.2015.5.571eng
  5. Cifci E.A., Yagdi K., 2012. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified polymorphic DNA (RAPD) analysis. Turk. J. Field Crops 17(1), 91–95.
  6. Fu Y.B., 2006. Impact of plant breeding on genetic diversity of agricultural crops: Searching for molecular evidence. Plant Genet. Resour. Charact. 4(1), 71–78. https://doi.org/10.1079/PGR2006116 DOI: https://doi.org/10.1079/PGR2006116
  7. Hammer Ø., Harper D. A.T., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis, Paleontol. Electron. 4(1), 9.
  8. Hammer K., Knüpffer H., Xhuveli L., Perrino P., 1996. Estimating genetic erosion in landraces-two case studies. Genet. Resour. Crop Evol. 43, 329–336. https://doi.org/10.1007/BF00132952 DOI: https://doi.org/10.1007/BF00132952
  9. Khaled A.G.A., Motawea M.H., Said A.A., 2015. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. J. Genet. Eng. Biotechnol. 13(2), 243–252. https://doi.org/10.1016/j.jgeb.2015.05.001 DOI: https://doi.org/10.1016/j.jgeb.2015.05.001
  10. Khan M.K., Pandey A., Thomas G., Akkaya M.S., Kayis A.A., Ozsensoy Y., Hamurcu M., Gezgin S., Topal A., Hakki E.E., 2015. Genetic diversity and population structure of wheat in India and Turkey. AoB Plants, 7, plv 083. https://doi.org/10.1093/aobpla/plv083 DOI: https://doi.org/10.1093/aobpla/plv083
  11. Khan S., Ghanghro A.B, Memon A., Tahir I., Shah A.M, Sahito M.A., Talpur F.N., Qureshi S., 2013. Quantitative analysis of wheat proteins in different varieties grown in Sindh, Pakistan. Intl. J. Agri. Crop Sci. 5(16), 1836–1839.
  12. Kump B., Javornik B., 1996. Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci. 111(2), 149–158, https://doi.org/10.1016/0168-9452(95)04321-7 DOI: https://doi.org/10.1016/0168-9452(95)04321-7
  13. Liu B.H., 1998. Statistical genomics: Linkage, mapping and QTL analysis. CRC Press, Boca Raton, Florida, USA.
  14. Mandoulakani B.A., Shahnejat-Bushehri A.A., Sayed Tabatabaei B.E., Torabi T., Hajiabad A.M., 2010. Generic diversity among wheat cultivars using molecular markers. J. Crop Improv. 24(4), 299–309. http://dx.doi.org/10.1080/15427528.2010.496668 DOI: https://doi.org/10.1080/15427528.2010.496668
  15. Mir R.R., Kumar J., Balyan H.S., Gupta P.K., 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genet. Resour. Crop Evol. 59, 717–726. https://doi.org/10.1007/s10722-011-9713-6 DOI: https://doi.org/10.1007/s10722-011-9713-6
  16. Najaphy A., Parchin R.A., Farshadfar E., 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnol. Biotechnol. Equip. 25(4), 2634–2638. https://doi.org/10.5504/ BBEQ.2011.0093 DOI: https://doi.org/10.5504/BBEQ.2011.0093
  17. Pavel A.B., Vasile C.I., 2012. PyElph – a software tool for gel images analysis and phylogenetics. BMC Bioinform. 13, 9. https://doi.org/10.1186/1471-2105-13-9 DOI: https://doi.org/10.1186/1471-2105-13-9
  18. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breeding 2, 225–238. https://doi.org/10.1007/BF00564200 DOI: https://doi.org/10.1007/BF00564200
  19. Punia S., Sandhu K.S., Siroha A.K., 2019. Difference in protein content of wheat (Triticum aestivum L.): Effect on functional, pasting, color and antioxidant properties. J. Saudi Soc. Agric. Sci. 18(4), 378–384. https://doi.org/10.1016/j.jssas.2017.12.005 DOI: https://doi.org/10.1016/j.jssas.2017.12.005
  20. Sthapit S.R., Marlowe K., Covarrubias C.C., Ruff T.M., Eagle J.D., McGinty E.M., Hooker M.A., Duong N.B., Skinner D.Z., See D.R., 2020. Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest. Crop Sci. 60(3), 3175–3190. https://doi.org/10.1002/csc2.20299 DOI: https://doi.org/10.1002/csc2.20299
  21. Tan S., Blanchard C., Mailer R., Agboola S., 2012. Extraction and residual antinutritional components in protein fractions of Brassica napus and Sinapis alba oil-free meals. Protein Sci. 21(1), 75–76.
  22. Tessier C.J., David P., Boursiquot This J.M., Charrier A., 1999. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Genet. 98, 171–177. https://doi.org/10.1007/s001220051054 DOI: https://doi.org/10.1007/s001220051054
  23. Xhulaj (Bode) D., Koto R., 2022. Estimation of genetic variability of autochthonous wheat (Triticum aestivum L.) genotypes using multivariate analysis. Agric. For. 68(1), 131–143. https://doi.org/10.17707/AgricultForest.68.1.07 DOI: https://doi.org/10.17707/AgricultForest.68.1.07
  24. Xhulaj D., Elezi F., Hobdari V., 2019. Interrelationships among traits and morphological diversity of wheat (Triticum aestivum L.) accessions in base collection of Plant Genetic Resources Institute, Albania. Acta Agric. Slov. 113(1), 163–179. https://doi.org/10.14720/aas.2019.113.1.14 DOI: https://doi.org/10.14720/aas.2019.113.1.14
  25. Xhulaj D., Gixhari B., 2020. Analysis of genetic variation in bread wheat by grain yield components. Agric. For. 66(4), 89–100. https://doi.org/10.17707/AgricultForest.66.4.07 DOI: https://doi.org/10.17707/AgricultForest.66.4.07

Downloads

Download data is not yet available.

Podobne artykuły

<< < 34 35 36 37 38 39 40 41 42 43 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.