Abstract
Abstract. The aim of this study was to molecularly identify and assess the genetic diversity of 12 Mentha genotypes using, for the first time, two types of DNA markers simultaneously – ISSR (inter simple sequence repeats) and SCoT (start codon targeted). Selected genotypes representing various Mentha species and varieties were analyzed to determine the level of genetic similarity and phylogenetic relationships between them. The level of polymorphism obtained for ISSR markers was 71%, while for SCoT it was 88.7%. The obtained data were analyzed, allowing for the assessment of the level of genetic similarity and the construction of dendrograms illustrating the genetic structure of the studied population. Studies indicate that the use of SCoT markers enables the identification of the following genotypes: Plectranthus amboinicus (Lour.) Spreng, Mentha pulegium L., Mentha spicata L. cv. Moroccan, Mentha suaveolens Ehrh. var. variegata (pineapple mint), Mentha spicata L., and Mentha longifolia L. ISSR markers, due to the generation of only monomorphic and polymorphic bands, do not allow for the direct identification of any of the studied genotypes. Data from both marker systems indicate significant genetic diversity among the analyzed genotypes, which may be important for breeding programs and the conservation of genetic resources of the Mentha genus.
References
- Ahmad İ., Khan S.U., Khan A. et al., 2018. Reassessment of Mentha species from Kunhar River catchment using morphological and molecular markers. Anadolu J. Aegean Agric. Res. Inst. 28(1), 6–12.
- Choupani A., Shojaeiyan A., Maleki M., 2019. Genetic relationships of Iranian endemic mint spe-cies, Mentha mozaffariani Jamzad and some other mint species revealed by ISSR markers. Bi-oTechnologia 100, 19–28. https://doi.org/10.5114/bta.2019.83208
- Çelik C., Seraj N.A., Yasak S. et al., 2024. Molecular characterization and genetic relationships in different mint (Mentha L.) species with ISSR marker technique. Biol. Bull. 51(4), 959–968. https://doi.org/10.1134/S106235902360616X
- Collard B.C., Mackill D.J., 2009. Start codon targeted (SCoT) polymorphism: a simple novel DNA marker technique for generating gene targeted markers in plants. Plant Mol. Biol. Rep. 27, 86–93. https://doi.org/10.1007/s11105-008-0060-5
- Devi A., Iqbal T., Ahmad Wani I. et al., 2022. Assessment of variability among morphological and molecular characters in wild populations of mint [Mentha longifolia (L.) L.] germplasm. Saudi J. Biol. Sci. 29, 3528–3538. https://doi.org/10.1016/j.sjbs.2022.02.013
- Dorman H.D., Koşar M., Kahlos K. et al., 2013. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569. https://doi.org/10.1021/jf034108k
- Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.
- Fukui Y., Saito M., Nakamura N. et al., 2022. Classification of Southeast Asian mints (Mentha spp.) based on simple sequence repeat markers. Breed. Sci. 72, 181–187. https://doi.org/10.1270/ jsbbs.21058
- Gobert V., Moja S., Colson M. et al., 2002. Hybridization in the section Mentha (Lamiaceae) in-ferred from AFLP markers. Am. J. Bot. 89, 2017–2023. https://doi.org/10.3732/ajb.89.12.2017
- Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9.
- Heylen O.C.G., Debortoli N., Marescaux J. et al., 2021. A revised phylogeny of the Mentha spicata clade reveals cryptic species. Plants 10, 819. https://doi.org/10.3390/plants10040819
- Ibrahim H.M., 2017. Assessment of genetic diversity and relationships of five Mentha species using RAPD marker. Curr. Sci. Int. 6, 271–277.
- Jędrzejczyk I., Rewers M., 2018. Genome size and ISSR markers for Mentha L. (Lamiaceae) genetic diversity assessment and species identification. Ind. Crops Prod. 120, 171–179. https://doi.org/10.1016/j.indcrop.2018.04.062
- Khan N., Singh S., Singh Dhawan S., 2017. Development of species specific SCoT markers and analysis of genetic diversity among Mentha genotypes. Int. J. Innov. Sci. Engineer. Technol. 4, 2348–7968.
- Khanuja S.P.S., Shasany A.K., Srivastava A. et al., 2000. Assessment of genetic relationships in Mentha species. Euphytica 111, 121–125. https://doi.org/10.1023/A:1003829512956
- Kiełtyka Dadasiewicz A., Okoń S., Ociepa T. et al., 2017. Morphological and genetic diversity among peppermint (Mentha × piperita L.) cultivars. Acta Sci. Pol. Hortorum Cultus 16, 151–161. https://doi.org/10.24326/asphc.2017.3.15
- Lawrence B.M., 2006. Mint. The Genus Mentha. CRC Press, Boca Raton. https://doi.org/10.1201/ 9780849307980
- Malik R.H., Shah S.M., Khan A.R. et al., 2019. Evaluation of sequence related amplified polymor-phic markers for genetic characterization of Mentha species. Phillipine J. Crop Sci. 44, 71–76.
- Mkaddem M., Bouajila J., Ennajar M. et al., 2009. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 74, M358–M363. https://doi.org/10.1111/j.1750-3841.2009.01272.x
- Momeni S., Shiran B., Razmjoo K., 2006. Genetic variation in Iranian mints on the bases of RAPD analysis. Pak. J. Biol. Sci. 9, 1898–1904. https://doi.org/10.3923/pjbs.2006.1898.1904
- Moshrefi Araghi A., Nemati H., Azizi M. et al., 2021. Association of genetic structure and diversity in Iranian wild germplasms of Mentha longifolia L. based on phenotypical, biochemical, and molecular markers. Chem. Biodivers. 18, e2001044. https://doi.org/10.1002/cbdv.202001044
- Naseem I., Khan M.A., Habib U. et al., 2025. Morphological profiling and DNA barcoding revealed genetic diversity and phylogeny of Mentha species cultivated in Pakistan. Genet. Resourc. Crop Evol. 72(3), 29772995. https://doi.org/10.1007/s10722-024-02140-x
- Nei M., Li W., 1979. Mathematical model for studying genetic variation in terms of restriction endo-nucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.
- Panjeshahin Z., Sharifi Sirchi G., Samsampour D., 2018. Genetic and morphological diversity of wild mint Mentha longifolia (L.) Hudson subsp. noeana (Briq.) Briq. in south and southeast-ern Iran. J. Med. Plants By-products 7(1), 105–115. https://doi.org/10.22092/jmpb.2018.116741
- Rodrigues L., van den Berg C., Póvoa O. et al., 2013. Low genetic diversity and significant structur-ing in the endangered Mentha cervina populations and its implications for conservation. Bio-chem. Syst. Ecol. 50, 51–61. https://doi.org/10.1016/j.bse.2013.03.007
- Sabboura D., Yacoub R., Lawand S., 2016. Assessment of genetic relationships among Mentha species. Int. J. ChemTech Res. 9, 462–468. https://doi.org/10.1023/A:1003829512956
- Salama A.M., Osman E.A., El Tantawy A.A., 2019. Taxonomical studies on four Mentha species grown in Egypt through morpho anatomical characters and SCoT genetic markers. Plant Arch. 19, 2273–2286.
- Silva D., Vieira R., Alves R. et al., 2006. Mint (Mentha spp.) germplasm conservation in Brazil. Rev. Bras. Pl. Med. 8, 27–31.
- Sofyalıoğlu E., Sevindik E., Gübeş İ. et al., 2025. Phylogenetic analysis of endemic Sideritis L. spp. (Lamiaceae) in Türkiye based on chloroplast trnL-F, matK, and rbcL DNA sequences. Genet. Resourc. Crop Evol. 72(4), 4381–4391. https://doi.org/10.1007/s10722-024-02225-7
- Smolik M., Rzepka Plevnes D., Jadczak D. et al., 2007. Morphological and genetic variability of chosen Mentha species. Herba Pol. 53, 90–97.
- Soilhi Z., Trindade H., Vicente S. et al., 2020. Assessment of the genetic diversity and relationships of a collection of Mentha spp. in Tunisia using morphological traits and ISSR markers. J. Hor-tic. Sci. Biotechnol. 95, 483–495. https://doi.org/10.1080/14620316.2019.1702482
- Thakur V.V., Tiwari S., Tripathi N. et al., 2016. DNA barcoding and phylogenetic analyses of Mentha species using rbcL sequences. Ann. Phytomed. 5(1), 59–62
- Vining K.J., Pandelova I., Hummer K. et al., 2019. Genetic diversity survey of Mentha aquatica L. and Mentha suaveolens Ehrh., mint crop ancestors. Genet. Resour. Crop Evol. 66, 825–845. https://doi.org/10.1007/s10722-019-00750-4
- Vining K.J., Pandelova I., Lange I. et al., 2022. Chromosome level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 Genes Genomes Genet. 12(8), jkac112. https://doi.org/10.1093/g3journal/jkac112
Downloads
Download data is not yet available.
-
SYLWIA SOWA,
Preliminary screening of Avena sterilis L. for resistance to crown rust
,
Agronomy Science: Vol. 75 No. 2 (2020)
-
Edward Pałys,
Piotr Kraska,
Robert Kuraszkiewicz,
The influence of tillage systems on the weight of winter wheat post–harvest residues cultivated on rendzina soil
,
Agronomy Science: Vol. 59 No. 2 (2004)
-
Krystyna Zarzecka,
Marek Gugała,
Influence of the weeding control methods potato on quality culinary tubers
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
Halina Lipińska,
Malwina Michalik-Śnieżek ,
Teresa Wyłupek,
Małgorzata Stachorzecka,
Weronika Kamińska,
Rozalia Sowisz,
Agata Wrona,
Ecosystem services of the Nałęczów Spa Park
,
Agronomy Science: Vol. 77 No. 4 (2022)
-
KRYSTYNA ZARZECKA,
MAREK GUGAŁA,
HONORATA DOŁĘGA,
ANNA SIKORSKA,
The occurrence of tuber defect in potato yield after the application of soil fertilizer UGmax
,
Agronomy Science: Vol. 69 No. 2 (2014)
-
ALEKSANDRA GŁOWACKA,
AGNIESZKA KASICZAK,
Changes in the number and area of certified organic farms in Poland after accession to the European Union
,
Agronomy Science: Vol. 74 No. 2 (2019)
-
DOROTA JANKOWSKA,
AGNIESZKA MAJKA,
Application of alternative distinguishing methods to identify disparities between the means in agricultural researches
,
Agronomy Science: Vol. 64 No. 3 (2009)
-
Sylwia Andruszczak,
The effect of foundation method and harvesting time on the yield of lovage (Levisticum officinale Koch.)
,
Agronomy Science: Vol. 59 No. 3 (2004)
-
LESZEK RACHOŃ,
GRZEGORZ SZUMIŁO,
Variability of leaf area index (LAI), depending on the wheat genotype and the intensification of the cultivation technology
,
Agronomy Science: Vol. 70 No. 1 (2015)
-
ROMAN MOLAS,
HALINA BORKOWSKA,
ALEKSANDRA GŁOWACKA,
DOMINIKA SKIBA,
Quantifying the peak yields of four cellulosic bioenergy crops in the East-Central Poland.
,
Agronomy Science: Vol. 75 No. 1 (2020)
<< < 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.