Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 6 (2020)

Articles

ANTIOXIDANT ACTIVITY AND CYTOTOXIC EFFECT OF CHILEAN Buddleja globosa (MATICO) AND Ribes magellanicum (ZARZAPARRILLA) FLOWER EXTRACTS

DOI: https://doi.org/10.24326/asphc.2020.6.5
Submitted: November 19, 2020
Published: 2020-12-31

Abstract

The native Chilean shrubs Buddleja globosa (matico) and Ribes magellanicum (zarzaparrilla) are used widely at a rural level, due to their medicinal properties. Nevertheless, little is known about their secondary metabolites and cytotoxic effect. The aim of this study was to evaluate the content of different compounds like catechin, epicatechin, p-coumaric acid and the antioxidant capacity by ABTS, ORAC, FRAP and DPPH methods. In addition, the cytotoxic activity of both extracts was evaluated against Chinese hamster ovary (CHO-K1) cell lines by MTT and neutral red assays. The results suggest that the most abundant constituent in Budleja globosa and Ribes magellanicum were catechin (682.43 mg/100 g DW) and epicatechin (3362.08 mg/100 g DW) respectively; while the ORAC methodology showed an elevated antioxidant activity for matico (134147.31 μmol Trolox Eq/100 g DW). On the other hand, both extracts at the assayed concentrations affect the membrane stability and cellular metabolic capacity of the CHO-K1 cell lines. These finding provide a direction for further researches, and suggest the matico and zarzaparrilla flower extracts as promising sources of antioxidants, and as research objects through the analyze of their metabolic behavior and antitumoral potential.

References

  1. Aaby, K., Hvattum, E., Skrede, G. (2004). Analysis of flavonoids and other phenolic compounds using high performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J. Agric. Food Chem., 52, 4595–4603. DOI: 10.1021/jf0352879
  2. Al-Mustafa, A.H., Al-Thunibat, O.Y. (2008). Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak. J. Biol. Sci., 11(3), 351–358. DOI: 10.3923/pjbs.2008.351.358
  3. Arnao, M.B. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci., 11, 419–421. DOI: 10.1016/s0924-2244(01)00027-9
  4. Avello, M., Pastene, E., Barriga, A., Bittner, M., Ruiz, E., Becerra, J. (2014). Chemical properties and assessment of the antioxidant capacity of leaf extracts from populations of Ugni molinae growing in continental Chile and in Juan Fernandez archipelago. Int. J. Pharmacogn. Phytochem. Res., 6, 746–752.
  5. Backhouse, N., Erazo, S., Negrete, R., Rosales, L., Ramírez, F. (2002). San Feliciano. Avances en la búsqueda de compuestos antiinflamatorios y antiartríticos en especies chilenas: Buddleja globosa y Fabiana densa. I Congreso Iberoamericano de Química Fina Farmacéutica CYTED, 15–19 de abril, Salamanca, España (panel).
  6. Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239(1), 70–76.
  7. Berridge, M.V., Tan, A.S. (1993). Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Arch. Biochem. Biophys., 303(2), 474–482.
  8. Bouzaiene, N.N., Jaziri, S.K., Kovacic H., Chekir-Ghedira, L., Ghedira, K., Luis, J. (2015). The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur. J. Pharmacol., 766, 99–105.
  9. Borenfreund, E., Puerner, J.A. (1985). A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J. Tissue Cult. Methods, 9(1), 7–9.
  10. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 25–30.
  11. Calil Brondani, J., Reginato, F.Z., Silva Brum, E., da, De Souza Vencato, M., Lima Lhamas, C., Viana, C., Manfron, M.P. (2017). Evaluation of acute and subacute toxicity of hydroethanolic extract of Dolichandra unguiscati L. leaves in rats. J. Ethnopharmacol., 202(3), 147–153.
  12. Eyéghé-Bickong, H.A., Alexandersson, E.O., Gouws, L.M., Young, P.R., Vivier, M.A., 2012. Optimization of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries. J. Chromatogr. B, 885–886, 43–49. DOI: 10.1016/j.jchromb.2011.12.011
  13. Fernández-Pachón, M.S., Villaño, D., Troncoso, A.M., García-Parrilla, M.C. (2006). Revisión de los métodos de evaluación de la actividad antioxidante in vitro del vino y valoración de sus efectos in vivo. Arch. Latinoam. Nutr., 5(2), 110–122. DOI: 10.1163/_q3_SIM_00374
  14. Fields, W., Fowler, K., Hargreaves, V., Reeve, L., Bombick, B. (2017). Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system. Toxicol. In Vitro, 40, 144–152. DOI: 10.1016/j.tiv.2017.01.001
  15. Frankel, E.N., Huang, S.W., Kanner, J., German, J.B. (1994). Interfacial phenomena in the evaluation of antioxidants: Bulk oils versus emulsions. J. Agric. Food Chem., 42, 1054–1059. DOI: 10.1021/jf00041a001
  16. Gurib-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 27, 1–93. DOI: 10.1016/j.mam.2005.07.008
  17. Houghton, P.J. (1984). Ethnopharmacology of some Buddleja species. J. Ethnopharmacol., 11(3), 293–308. DOI: 10.1016/0378-8741(84)90075-8
  18. Houghton, P.J. (2003). Buddleja globosa: a medicinal plant of Chile, their chemistry, biological activity and traditional uses. BLACPMA, 2(3), 36–41.
  19. Huang, D., Ou, B., Prior, R.L. (2005). The chemistry behind dietary antioxidant capacity assays. J. Agric. Food Chem., 53(6), 1841–1856. DOI: 10.1021/jf030723c
  20. Jersáková, J., Jürgens, A., Smilauer, P., Johnson, S.S. (2012). The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct. Ecol., 26, 1381–1389. DOI: 10.1111/j.1365-2435.2012.02059.x
  21. Jiménez-Aspee, F., Thomas-Valdés, S., Schulz, A., Ladio, A., Theoduloz, C., Schmeda-Hirschmann, G. (2016). Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr., 4(4), 595–610. DOI: 10.1002/fsn3.323
  22. Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic composi- tions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kosan. Microchem. J., 91(2), 187–192. DOI: 10.1016/j.microc.2008.10.008
  23. Koňariková, K., Ježovičová, M., Keresteš, J., Gbelcová, H., Ďuračková, Z., Žitňanová, I. (2015). Anticancer effect of black tea extract in human cancer cell lines. Springerplus, 4, 127. DOI: 10.1186/s40064-015-0871-4
  24. Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: An overview. Sci. World J., 4(2), 32– 48. DOI: 10.1155/2013/162750
  25. Ladio, A.H., Lozada, M., Weigandt, M. 2007. Comparison of traditional wild plant knowledge between aboriginal communities inhabiting arid and forest environments in Patagonia, Argentina. J. Arid. Environ., 69, 695–715. DOI: 10.1016/j.jaridenv.2006.11.008
  26. Li, H., Wang, X., Li, Y., Li, P., Wang, H. (2009). Polyphenolic compounds andantioxidant properties of selected China wines. Food Chem., 112(2), 454–460. DOI: 10.1016/j.foodchem.2008.05.111
  27. Lu, J.M., Lin, P.H., Yao, Q., Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med., 14(4), 840–860. DOI: 10.1111/j.1582-4934.2009.00897.x
  28. Lucini, L., Kane, D., Pellizzoni, M., Ferrari, A., Trevisi, E., Ruzickova, G., Arslan, D. (2016). Phenolic profile and in vitro antioxidant power of different milkthistle [Silybum marianum (L.) Gaertn.] cultivars. Ind. Crops Prod., 83, 11–16. DOI: 10.1016/j.indcrop.2015.12.023.
  29. Määttä, K.R., Kamal-Eldin, A., Törrönen, A.R. (2003). High-performance liquid chromatography (HPLC) analysis of phe- nolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J. Agr. Food Chem., 51, 6736–6744. DOI: 10.1021/jf0347517
  30. Marinova, D., Ribarova, F., Atanassova, M. (2005). Total phenolics and total flavonoids in bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall., 40(3), 255–260.
  31. Marszalek, K., Wozniak, L., Kruszewski, B., Skapska, S. 2017. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci., 18(2), pii: E277. DOI: 10.3390/ijms18020277
  32. Moon, J., Shibamoto, T. (2009). Antioxidant assays for plant and food components. J. Agric. Food Chem., 57(5), 1655– 1666. DOI: 10.1021/jf803537k
  33. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65(1–2), 55–63. DOI: 10.1016/0022-1759(83)90303-4
  34. Muanda, F., Koné, D., Dicko, A., Soulimani, R., Younos, C. (2011). Phytochemical composition and antioxidant capacity of three malian medicinal plant parts. Evid. Based Complement. Alternat. Med., 8(1), 1–8. DOI: 10.1155/2011/620862
  35. Muñoz, M., Muñoz, C., Godoy, I. (1986). Especies nativas con potencial como frutales arbustivos. IPA Carillanca, 5(3), 32–35.
  36. Najmus, A.A., Whitney, P.J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards monoand di- saccharide sugars. Biomass Bioenergy, 35(11), 4748–4750. DOI: 10.1016/j.biombioe.2011.09.013
  37. Oliveiro, T., Capuano, E., Cämmerer, B., Fogliano, V. (2009). Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J. Agric. Food Chem., 57(1), 147–52. DOI: 10.1021/jf802250j
  38. Peña-Cerda, M., Arancibia-Radich, J., Valenzuela-Bustamante, P., Pérez-Arancibia, R., Barriga, A., Seguel, I., García, L. Delporte, C. (2017). Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem., 215, 219–227. DOI: 10.1016/j.foodchem.2016.07.159
  39. Pittella, F., Dutra, R.C., Junior, D.D., Lopes, M.T., Barbosa, N. (2009). Antioxidant and cytotoxic activites of Centella asiatica (L.) Urb. Int. J. Mol. Sci., 10(9), 3713–3721. DOI: 10.3390/ijms10093713
  40. Placencia, M., Núñez, M., Oliveira, G., Torrealva, L., Bonilla, P., Jurupe, H. (2002). Efecto antiulceroso y citoprotector de matico, Piper angustifolium (Perú) y Buddleja globosa (Chile), en animales de experimentación. An. Fac. Med., 63, 21–31.
  41. Pounis, G., Costanzo, S., Guiseppe, R., di, Lucia, F., de, Santimone, I., Sciarretta, A., Barisciano, P., Persichillo, M., Curtis, A., de, Zito, F., Di Castelnuovo, A.F., Sieri, S., Benedetta Donati, M., Gaetano, G., de, Iacovello, L. (2013). Consumption of healthy foods at different contentof antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the Moli-sani study. Eur. J. Clin. Nutr., 67(2), 207–213. DOI: 10.1038/ejcn.2012.201.
  42. Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem., 51(11), 3273–3279. DOI: 10.1021/jf0262256
  43. Prior, R.L., Wu, X., Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53(10), 4290–4302. DOI: 10.1021/jf0502698
  44. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical catión decolorization assay. Free Radic. Biol. Med., 26(9–10), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3
  45. Romero, M., Rojano, B., Mella, J., Pessoa, C.D., Lissi, E., López, C. (2010). Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-Pyrogallol red assay in the presence of Triton X-100 micelles. Molecules, 15(9), 6152–6167. DOI: 10.3390/molecules15096152
  46. Ruiz, A., Bustamante, L., Vergara, C., Von Baer, D., Hermosin-Gutierrez, L., Obando, L., Mardones, C. (2015). Hy- droxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem., 167, 84–90. DOI: 10.1016/j.foodchem.2014.06.052
  47. Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem., 91, 621–632. DOI: 10.1016/j.foodchem.2004.06.031
  48. Silva, L.M., Figueiredo, E.A., Ricardo, N.M., Vieira, I.G., Figueiredo, R.W., Brasil, I.M., Gomes, C.L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem., 143, 398–404. DOI: 10.1016/j.foodchem.2013.08.001
  49. Simirgiotis, M.J., Schmeda-Hirschmann, G. (2010). Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 217, 443–449. DOI: 10.1016/j.chroma.2009.11.014
  50. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic., 16, 144–158.
  51. Song, F.L., Gan, R.Y., Zhang, Y., Xiao, Q., Kuang, L., Li, H.-B. (2010). Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci., 11, 2362–2372. DOI: 10.3390/ijms11062362
  52. Song, L., Wang, X., Zheng, X., Huang, D. (2011). Polyphenolic antioxidant profiles of yellow camellia. Food Chem., 129, 351–357. DOI: 10.1016/j.foodchem.2011.04.083
  53. Soto, C., Caballero, E., Pérez, E., Zúñiga, M.A. (2014). Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food Bioprod. Process., 92(3), 328–333. DOI: 10.1016/j.fbp.2013.06.002
  54. Torres y Torres, J.L., Rosazza, J.P. (2001). Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata. J. Nat. Prod., 64(11), 1408–1414. DOI: 10.1021/np010238g
  55. Vogel, H., Razmilic, I., San Martín, J., Doll, U., González, B. (2005). Plantas medicinales chilenas: Experiencia de domesticación y cultivo de boldo, matico, bailahuén, canelo, peumo y maqui. Editorial Universidad de Talca, Talca, 171–193.
  56. Wang, P., Henning, S.M., Heber, D. (2010). Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One, 5(4), 1–10. DOI: 10.1371/journal.pone.0010202
  57. Wojcikowski, K., Stevenson, L., Leach, D., Wohlmuth H., Gobe, G. (2007). Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: a comparison using a sequential three-solvent extraction process. J. Altern. Complement. Med., 13, 103–109. DOI: 10.1089/acm.2006.6122
  58. Wojdylo, A., Osmianski, J., Czermerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 105(3), 940–949. DOI: 10.1016/j.foodchem.2007.04.038

Downloads

Download data is not yet available.