Skip to main navigation menu Skip to main content Skip to site footer

Vol. 19 No. 4 (2020)

Articles

THE EFFECT OF CHITOSAN ON GENE EXPRESSION, SOME MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF SWEET BASIL (Ocimum basilicum L.) UNDER SALINITY STRESS

DOI: https://doi.org/10.24326/asphc.2020.4.2
Submitted: August 5, 2020
Published: 2020-08-28

Abstract

Sweet basil is an important medicinal plant belonging to Lamiaceae family. In this plant, Phenylpropanoid pathway possesses some enzymes involving in generating suitable essential oil constituents. The main purpose of conducting this study was to investigate the effects of chitosan on sweet basil’s growth and physiological parameters as well as gene expression subjected to salinity stress. After employing a foliar-spray of chitosan at 0 (as control) and 0.2 gl–1, the plants were subjected to salinity treatments at 0, 25, 50, 100, and 150 mM NaCl. The results of this research revealed that chitosan, compared to the controls, improved growth parameters under stressed or non-stressed conditions. In this regard, chitosan increased protein and chlorophyll contents as well as the expression of PAL and COVMT genes leading to an increase in phenolic compounds. To sum up, chitosan improved sweet basil tolerance to salinity through influencing the genes involved in the pathway of phenylpropanoid so as to produce secondary metabolites.

References

  1. Ahmadi, F., Kadivar, M., Shahedi, M. (2007). Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 105(1), 57–64. DOI: 10.1016/j.foodchem.2007.03.056
  2. Ayala-Astorga, G.I., Alcaraz-Meléndez, L. (2010). Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electron. J. Biotechnol., 13(5), 13–14. DOI: 10.2225/vol13-issue5-fulltext-13
  3. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1–2), 248–254. DOI: 10.1016/0003-2697(76)90527-3
  4. Carillo, P., Annunziata, M.G., Pontecorvo, G., Fuggi, A., Woodrow, P. (2011). Salinity stress and salt tolerance. In: Abiotic stress in plants-mechanisms and adaptations, Shanker, A.K., Venkateswarlu, B.B (eds). InTech, Rijeka.
  5. Chakraborty, M., Karun, A., Mitra, A. (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J. Plant Physiol., 166(1), 63–71. DOI: 10.1016/j.jplph.2008.02.004
  6. Çulha, Ş., Çakirlar, H. (2011). The effect of salinity on plants and salt tolerance mechanisms. AKU-J. Sci. Eng., 11, 11–34.
  7. Deschamps, C., Raskin, I., Simon, J.E. (2008). Regulation of essential oil accumulation in basil (Ocimum basilicum L.) in response to elicitation. ‎Int. J. Plant Sci., 169(8), 981–986. DOI: 10.1086/590454
  8. Falcón-Rodríguez, A.B., Cabrera, J.C., Ortega, E., Martínez-Téllez, M.A. (2009). Concentration and physicochemical properties of chitosan derivatives determine the induction of defense responses in roots and leaves of tobacco plants. Am. J. Agric. Biol. Sci., 4(3), 192–200. DOI: 10.3844/ajabssp.2009.192.200
  9. Gang, D.R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Pichersky, E. (2002). Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell, 14(2), 505–519. DOI: 10.1105/tpc.010327
  10. Hoagland, D.R., Arnon, D.I. (1950). The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn., Circ., 347, 1–32.
  11. Iriti, M., Faoro, F. (2008). Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol. Biochem., 46(12), 1106–1111. DOI: 10.1016/j.plaphy.2008.08.002
  12. Juliani, H.R., Simon, J.E. (2002). Antioxidant activity of basil. In: Trends in New Crops and New UsesJanick, J., Whipkey, A. (eds.). ASHS Press, Alexandria, VA 575–579.
  13. Kumar, M.N.R. (2000). A review of chitin and chitosan applications. React. Funct. Polym., 46(1), 1–27.
  14. Labra, M., Miele, M., Ledda, B., Grassi, F., Mazzei, M., Sala, F. (2004). Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci., 167(4), 725–731. DOI: 10.1016/j.plantsci.2004.04.026
  15. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ., 25, 239–250. DOI: 10.1046/j.0016-8025.2001.00808.x
  16. Naderi, S., Fakheri, B., Esmailzadeh, B. S. (2014). Increasing of chavicol o-methyl transferase gene expression and catalase and ascorbate peroxidase enzymes activity of Ocimum basilicum by chitosan. Crop Biotechnol., 3(6), 1–9 (In Farsi).
  17. Pichyangkura, R., Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic., 196, 49–65. DOI: 10.1016/j.scienta.2015.09.031
  18. Rahman, N.N.N.A., Zakaria, Z., Kadir, M.O.A. (2003).
  19. Influence of elicitor availability on Limonene and Linalool accumulation from Citrus Grandis cell cultures. Malaysian J. Pharm. Sci., 1, 39–49.
  20. Ray, S.R., Bhuiyan, M.J.H., Anowar, M., Hossain, S.M., Tahjib-Ul-Arif, M. (2015). Chitosan suppresses antioxidant enzyme activities for mitigating salt stress in mungbean varieties. IOSR-JAVS, 9(9), 36–41. DOI: 10.9790/2380-0909023641
  21. Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012). Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plant., 6, 245–252. DOI: 10.3923/rjmp.2012.245.252
  22. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  23. Sheikha, S.A.K., AL-Malki, F.M. (2011). Growth and chlorophyll responses of bean plants to the chitosan applications. Eur. J. Sci. Res., 50, 124–134.
  24. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144–158.
  25. Stoeva, N., Berova, M., Zlatev, Z. (2005). Effect of arsenic on some physiological parameters in bean plants. Biol. Plantarum, 49(2), 293–296. DOI: 10.1007/s10535-005-3296-z
  26. Vasconsuelo, A., Giulietti, A.M., Boland, R. (2004). Signal transduction events mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum. Plant Sci., 53, 405–413. DOI: 10.1016/j.plantsci.2003.10.007
  27. Wang, L., Li, W., Ma, L., Chen, J., Lü, H., Jian, T. (2016). Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind. Crop Prod., 84, 248–253. DOI: 10.1016/j.indcrop.2016.01.050
  28. Wen, P.F., Chen, J.Y., Wan, S.B., Kong, W.F., Zhang, P. Wang, W. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. J. Plant Growth Regul., 55, 1–10. DOI: 10.1007/s10725-007-9250-7

Downloads

Download data is not yet available.

Most read articles by the same author(s)