Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 17 Nr 5 (2018)

Artykuły

ASSESSMENT OF GENETIC VARIABILITY AMONG RASPBERRY ACCESSIONS USING MOLECULAR MARKERS

DOI: https://doi.org/10.24326/asphc.2018.5.6
Przesłane: 29 listopada 2018
Opublikowane: 2018-11-29

Abstrakt

In this study, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) loci were used to investigate the genetic relationships in a group of 22 raspberry accessions. Fifteen RAPD primers generated a total of 324 bands, among them 94.1% were polymorphic. From ten used SSR pairs of primers, nine generated only polymorphic bands and the average percentage of polymorphism was 97.8%. Genetic similarity indices calculated on the basis of RAPD and SSR data indicated a wide range of genetic variability of the analyzed raspberry collection. Cluster analysis by UPGMA (Unweighted Pair-Group Method with Arithmetic averaging) and PCA (Principal Component Analysis) clearly delineated the genetic relationships among all the accessions. The highest genetic similarity, determined on the basis of RAPD and SSR markers, was found between two Polish cultivars – ‘Polesie’ and ‘Polesie Żółte’, whilst ‘Jewel’ from USA, belonging to Rubus occidentalis, was found to be the cultivar that varied most from all the accessions. The obtained results confirmed the usability of RAPD and SSR markers for discriminating among closely related raspberries and for determining the genetic variability among cultivars. It might be helpful for breeders to plan their breeding strategy.

Bibliografia

  1. Anderson, J.A., Churchill, G.A., Autrique, J.E., Sorells, M.E., Tansley, S.D. (1993). Optimizing parental selection for genetic-linkage maps. Genome, 36, 181–186.
  2. Amsellem, L., Dutech, C., Billotte N. (2001). Isolation and characterization of polymorphic microsatellite loci in Rubus alceifolius Poir. (Rosaceae), an invasive weed in La Réunion island. Mol. Ecol. Notes, 1, 33–35.
  3. Antonius-Klemola, K. (1999). Molecular markers in Rubus (Rosaceae) research and breeding. J. Hortic. Sci. Biotechnol., 74, 149–160.
  4. Badjakov, I., Todorovska, E., Kondakova, V., Boicheva, R., Atanassov, A. (2006). Assessment the genetic diversity of Bulgarian raspberry germlpasm collection by microsatellite and RAPD markers. J. Fruit Ornam. Plant Res., 14 (Suppl. 1), 61–76.
  5. Besnard, G., Breton, C., Baradat, P., Khadari, B., Bervillé, A. (2001). Cultivar identification in olive based on RAPD markers. J. Am. Soc. Hort. Sci., 126, 668–675.
  6. Castillo, N., Reed, B., Graham, J., Fernandez-Fernandez, F., Bassil, N.V. (2010). Microsatellite markers for raspberry and blackberry. J. Am. Soc. Hort. Sci., 135, 271–278.
  7. Dossett, M., Bassil, N.V., Finn, C.E. (2010). Transferability of Rubus microsatellite markers to black raspberry. Acta Hortic., 859, 103–106.
  8. Dossett, M., Bassil, N.V., Lewers, K.S., Finn, C.E. (2012). Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet. Resour. Crop. Evol., 59, 1849–1865.
  9. Fernández, MP., Hernáiz, S., Ibáñez, J. 2008. Genetic characterization of raspberry cultivars using molecular markers. Acta Hortic., 777, 125–132.
  10. Fernandez-Fernandez, F., Antanaviciute, L., Govan, C.L., Sargent, D.J. (2011). Development of a multiplexed microsatellite set for fingerprinting red raspberry (Rubus ideaus) germplasm and its transferability to other Rubus species. J. Berry Res., 1, 177–187.
  11. Gawroński, J., Kaczmarska, E., Dyduch-Siemińska, M. (2017). Assessment of genetic diversity between Vaccinium corymbosum L. cultivars using RAPD and ISSR markers. Acta Sci. Pol. Hortorum Cultus, 16, 129–140.
  12. Graham, J., Hein, I., Powell, W. (2007). Raspberry. In: Genome mapping and molecular breeding in plants, Kole, C. (ed.). Springer, Berlin–Heidelberg, 4, 207–216..
  13. Graham, J., Jennings, N. (2009). Raspberry breeding. In: Breeding plantation tree crops: temperate species. Springer, New York.
  14. Graham, J., McNicol, R.J. (1995). An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. Theor. Appl. Genet., 90, 1128–1132.
  15. Graham, J., McNicol, R.J., Greig, K. Van de Ven, W.T.G. (1994). Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced by random primers. J. Hortic. Sci., 69, 123–130.
  16. Graham, J., Smith, K., Mackenzie, K., Jorgensen, L., Hackett, C.A., Powell, W. (2004). The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor. Appl. Genet., 109, 740–749.
  17. Graham, J., Squire, G.R., Marshall, B., Harrison, R.E. (1997). Spatially dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol. Ecol., 6, 1001–1008.
  18. Khanuja, S., Shasany, A., Srivastava, A. Kumar, S. (2000). Assessment of genetic relationships in Mentha species. Euphytica, 111, 121–125.
  19. Lamoureux, D., Sorokin, A., Lefèvre, I., Alexanian, S., Eyzaguirre, P., Hausman, J.-F. (2011). Investigation of genetic diversity in Russian collections of raspberry and blue honeysuckle. Plant Genet. Res., 9, 202–205.
  20. Lewers, K.S., Saski, C.A., Cuthbertson, B.J., Henry, D.C., Staton, M.E., Main, D.S., Dhanaraj, A.L., Rowland, L.J., Tomkins, J.P. (2008). A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers. BMC Plant Biol., 8, 9–76.
  21. Lisek, A., Rozpara, E. (2010). Identification of pear cultivars with RAPD and ISSR markers. J. Fruit Ornam. Plant Res., 18, 17–22.
  22. Lopes, M.S., Belo Maciel, B., Menconca, D., Sabino, G.F., Da Camara Machado, A. (2006). Isolation and characterization of simple sequence repeat loci in Rubus hochstetterorum and their use in other species from the Rosaceae family. Mol. Ecol. Notes, 6, 750–752.
  23. Marulanda, M.L., López, A.M., Aguilar, S.B. (2007). Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breed. Appl. Biot., 7, 242–252.
  24. Marulanda, M., López, A.M., Uribe, M. (2012). Molecular characterization of the Andean blackberry, Rubus glaucus, using SSR markers. Genet. Mol. Res., 11, 322–331.
  25. Okoń, S., Paczos-Grzęda, E., Łoboda, M., Sugier, D. (2014). Identification of genetic diversity among Arnica montana L. genotypes using RAPD markers. Acta Sci. Pol. Hortorum Cultus 13, 63–71.
  26. Parent, J.-G., Fortin, M.G., Page, Â.D. (1993). Identification of raspberry cultivars by random amplified polymorphic DNA (RAPD) analysis. Can. J. Plant Sci., 73, 1115–1122.
  27. Parent, J.-G., Page, D. (1998). Identification of raspberry cultivars by sequence characterized amplified region DNA analysis. HortScience, 33, 140–142.
  28. Patamsytė, J., Kleizaitė, V., Čėsnienė, T., Rančelis, V., Žvingila, D. (2010). The genetic structure of red raspberry (Rubus idaeus L.) populations in Lithuania. Cent. Eur. J. Biol., 5, 496–506.
  29. Stafne, E.T., Clark, J.R., Pelto, M.C., Lindstrom, J.T. (2003). Discrimination of Rubus cultivars using RAPD markers and pedigree analysis. Acta Hortic. 626, 119–124.
  30. Umar, G., Vasanthaiah, H.K., Kambiranda, D., Basha, S.M., Phills, B.R., Hunter, W. (2010). Assessment of genetic diversity among selected raspberry cultivars. Proc. Fla. State Hort. Sci., 123, 26–28.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.