Skip to main navigation menu Skip to main content Skip to site footer

Vol. 15 No. 1-2 (2016)

Artykuły

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI BIODEGRADOWALNYCH FOLII ZE SKROBI TERMOPLASTYCZNEJ

Submitted: April 11, 2019
Published: 2017-08-28

Abstract

In this work, we present a method for strain determination. This method is based on random points sprayed on the surface of the examined material. The method does not require vacuum deposition or the use of any difficult sample preparation method. Markers are embedded under room conditions. Another advantage of this method is that it can be used for materials with different moisture contents. This method was applied to observe Young’s modulus and the breaking force of biodegradable films produced from thermoplastic starch (TPS) during their storage in air and in soil. In our study, we consider the samples of thermoplastic starch obtained from a mixture of potato starch and glycerol with added polyvinyl alcohol (PVA) and keratin. We observed that the value of Young’s modulus after sample preparation is higher for the samples with a higher content of PVA and keratin. It was found that after two weeks of storage, the value of Young’s modulus significantly decreased for all samples stored in air. Young’s modulus increases for storage in the soil. The crystallinity does not depend on the screw rotational speed.

References

Anazodo, U.G.N., Chikwendu, S.C. (1983). Poisson’s ratio and elastic modulus of radially compressed biomaterials − II: Small deformation approximation. Trans. ASAE, 26, 923–929.

Belgacem, M.N., Gandini, A. (2009). Polymers and composites from renewable resources. Elsevier, Amsterdam.

Chikwendu, S.C., Anazodo, U.G.N. (1984). Poisson’s ratio and elastic modulus of radially compressed biomaterials − II: Large deformation approximation. Trans. ASAE, 27, 1563–1572.

Cyras, V.P., Manfredi, L.B., Ton-That, M.-T., Vázquez, A. (2008). Physical and mechanical properties of thermoplastic starch/ montmorillonite nanocomposite films. Carbohydr. Polym., 73, 55–63.

Dobrzański, B., jr. (1998). Mechanizmy powstawania uszkodzeń nasion roślin strączkowych. Acta Agrophys., 13, 1–96.

Du, Y.-L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.-L., Wang, Y.-Z. (2008). Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polym. Test., 27, 924–930.

Forssel, P., Hulleman, S.H.D., Myllärinen, P., Moatss, G., Parker, R. (1999). Aging of rubbery thermoplastic barley and oat starches. Carbohydr. Polym. 39, 43–51.

Girones, J., Lopez, J.P., Mutje, P., Carvalho, A.J.F., Curvelo, A.A.S., Vilaseca, F. (2012). Natural fibre-reinforced thermoplastic starch composites obtained by melt processing. Compos. Sci. Technol., 72, 858–863.

Gładyszewska, B. (2006). Testing machine for assessing the mechanical properties of biological materials. Tech. Sci., 9, 21–31.

Gładyszewska, B. (2007). Metoda badania wybranych mechanicznych właściwości cienkowarstwowych materiałów biologicznych. Rozprawy naukowe AR w Lublinie 325, Wydział Inżynierii Produkcji, Lublin.

Gładyszewska, B., Chocyk, D. (2004). Applying Fourier numerical analysis to determination of tensor elements of the deformations of seed covers. Opt. Appl., 34, 133–143.

Hulleman, S.H.D., Kalisvaart, M.G., Janssen, F.H.P., Feil, H., Vliegenthart, J.F.G. (1999). Origins of B-type crystallinity in glycerol-plasticised, compression-moulded potato starches. Carbohydr. Polym., 39, 351–360.

Janssen, L.P.B.M., Mościcki, L. (2009). Thermoplastic starch. A green material for various industries. WeinheimWiley-VCH, Weinheim.

Kishimoto, S., Xie, H., Shinya, N. (2000). Electron moiré method and its application to micro-deformation measurement. Opt. Laser Eng., 34, 1–14.

Mai, X., Yu, J., Kennedy, J.F. (2005). Studies on properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr. Polym., 62, 19–24.

Mościcki, L., Mitrus, M., Wójtowicz, A., Oniszczuk, T., Rejak, A., Janssen, L. (2012). Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res. Int., 47, 291–29.

Moulart, R., Rotinat, R., Pierron, F., Lerondel, G. (2007). On the realization of microscopic grids for local strain measurement by direct interferometric photolithography. Opt. Laser Eng., 45, 1131–1147.

Rejak, A., Mościcki, L. (2006). Biodegradable foil extruded from thermoplastic starch. Teka Kom. Mot. Energ. Rol., 6, 123–130.

Schlemmer, D., Oliveira, R.A., Sales, M.J.A. (2007). Polystyrene/thermoplastic starch blends with different plasticizers. J. Therm. Anal. Calorim., 87, 635–658.

Schlemmer, D., Sales, M.J.A. (2010). Thermoplastic starch films with vegetable oils of Brazilian Cerrado. J. Therm. Anal. Calorim., 99, 675–679.

Sciammarella, C.A., Sciammarella, F.M., Kim, T. (2003). Strain measurements in the nanometer range in a particulate composite using computer aided moiré. Exp Mech., 43, 341–347.

Sherif, S.M., Segerlind, I.J., Frame, J.S. (1994). An equation for the modulus elasticity of the radially compressed cylinder. Trans. ASAE, 76, 782–785.

Shi, R., Liu, Q., Ding, T., Han, Y., Zhang, L., Chen, D., Tian, D. (2007). Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci., 103, 574–586.

Soest, J.J.G., Hulleman, S.H.D., de Wit, D., Vliegenthart, J.F.G. (1996). Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydr. Polym., 29, 225–232.

Xiaofei, M., Jiugao, Y. (2004). Formamide as the plasticizer for thermoplastic starch. J. Appl. Polym. Sci., 93, 1769–1773.

Xiaofei, M., Jiugao, Y., Jin, F. (2004). Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym. Int., 53, 1780–1785.

Xie, H., Li, B., Geer, R., Xu, B., Castracane, J. (2003). Focused ion beam moiré method. Opt. Lasers Eng. 40, 163–177.

Zhang, Q.-X., Yu, Z.-Z., Xie, Z.-L., Naito, K., Kagawa, Y. (2007). Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer, 48, 7193–7200.

Downloads

Download data is not yet available.