Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Szybki i efektywny protokół otrzymywania zróżnicowanych genetycznie regenerantów stewii (Stevia rebaudiana Bertoni) drogą pośredniej organo-genezy

Magdalena Dyduch-Siemińska

Department of Genetics and Horticultural Plant Breeding, Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0002-6549-7391


Abstrakt

Regeneracja roślin poprzez pośrednią organogenezę pozwala na otrzymanie zróżnicowania genetycznego, które może zostać wykorzystane w kreowaniu nowych odmian. W pracy przedstawiono szybki i efektywny protokół jednoetapowego otrzymywania regenerantów stewii (Stevia rebaudiana Bertoni). Do otrzymania tkanki kalusowej oraz regeneracji pędów, jako eksplantaty pierwotne wykorzystano liście i międzywęźla, które wyłożono na pożywkę MS (Murashige and Skoog) wzbogaconą roślinnymi regulatorami wzrostu (PGR’s) NAA (1-Naphthaleneacetic acid) (2.0 mg/l), BA (6-Benzylaminopurine) (4.0 mg/l), 2,4-D (2,4-Dichlorophenoxyacetic‎) (2.0 mg/l). Tkanka kalusowa powstała na obu typach eksplantatów, jednakże ta pochodząca z na międzywęźlach była jedynie proliferująca. Z eksplantatów liściowych na zastosowanym podłożu już po 6 tygodniach trwania kultury uzyskano średnio 3.92 pędy z eksplantatu. Analizę zdolności morfogenetycznych otrzymanych regenerantów przeprowadzono na podłożu MS wzbogaconym o PGR’s - kinetin (0.25 mg/l) and BA (6-Benzylaminopurine) (0.5 mg/l). Ocena średniej liczby pędów, średniej długości pędów (cm) i średniej liczby węzłów na eksplantat wskazuje na zróżnicowanie fenotypowe otrzymanych regenerantów. Zastosowanie markerów RAPD (Randomly Amplified Polymorphic DNA) potwierdziło istnienie różnic także na poziomie DNA. Zaproponowany jednoetapowy, protokół regeneracji drogą pośredniej organogenezy indukuje zmienność somaklonalną Stevia rebaudiana Bertoni a uzyskane regeneranty po selekcji mogą być wykorzystane w hodowli twórczej tego gatunku.

Słowa kluczowe:

micropropagation, molecular markers, RAPD, shoot regeneration, somaclonal variation

Al-Taweel S.K., Azzam C.R., Khaled K.A., Abdel-Aziz R.M., 2021. Improvement of stevia (Stevia rebaudiana Bertoni) and steviol glycoside through traditional breeding and bio-technological approaches. SABRAO J. Breed. Genet. 53(1), 88–111.

Asthana P., Jaiswal V.S., Jaiswal U., 2011. Micropropagation of Sapindustrifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Phys-iol. Plant. 33, 1821–1829. https://doi.org/10.1007/s11738-011-0721-0

Bairu M.W., Aremu A.O., Van Staden J., 2011. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul. 63, 147–173. https://doi.org/10.1007/s10725-010-9554-x

Cao X., Hammerschlag F.A., 2000. Improved shoot organogenesis from leaf explants of high-bush blueberry. HortScience 35(5), 945–947. https://doi.org/10.21273/HORTSCI.35.5.945

Chacón-Morales P., Amaro-Luis J.M., Bahsas A., 2013. Isolation and characterization of (+)-mellein, the first isocoumarin reported in Stevia genus. Av. en Quim. 8, 145–151.

Chester K., Tamboli E.T., Parveen R., Ahmad S., 2013. Genetic and metabolic diversity in Stevia rebaudiana using RAPD and HPTLC analysis. Pharm. Biol. 51, 771–777. https://doi.org/10.3109/13880209.2013.765898

Doliński R., Jabłońska E., 2015. Mikrorozmnażanie stewii (Stevia rebaudiana Bert.) z eksplantatów węzłowych izolowanych z roślin wytworzonych in vitro. Agron. Sci. 70(4), 13–24.

Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15.

Dyduch-Siemińska M., Najda A., Gawroński J., Balant S., Świca K., Żaba A., 2020. Stevia rebaudiana Bertoni, a source of high-potency natural sweetener-biochemical and genetic characterization. Molecules 25(4), 767. https://doi.org/10.3390/molecules25040767

El-Zaidy M., Zayed M., Alharbi S., Doaigey A., Al Sahli A., Ammar R., 2014. Micropropaga-tion of seven Stevia rebaudiana Bert. genotypes via adult leaf explants. J. Pure Appl. Mi-crobiol. 8(2),1289–1298.

Esmaeili F., Kahrizi D., Mansouri M., Yari K., Kazemi N., Ghaheri M., 2016. Cell dedifferentiation in Stevia rebauiana as a pharmaceutical and medicinal plant. J. Rep. Pharm. Sci. 5, 12–17.

Ferrazzano G.F., Cantile T., Alcidi B., Coda M., Ingenito A., Zarrelli A., Di Fabio G., Pollio A., 2016. Is Stevia rebaudiana Bertoni a non cariogenic sweetener?. Molecules 21(1), 1–12. https://doi.org/10.3390/molecules21010038

Gantait S., Das A., Banerjee J., 2018. Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia. Sugar Tech. 20, 1–9. https://doi.org/10.1007/s12355-017-0563-1

Gantait S., Das A., Mandal N., 2015. Stevia: A comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech. 17, 95–106. https://doi.org/10.1007/s12355-014-0316-3

Grafi G., Barak S., 2014. Stress induces cell dedifferentiation in plants. Biochim. Biophys. Acta. 1849, 378–384. https://doi.org/10.1016/j.bbagrm.2014.07.015

Gunasena M.D.K.M., Senarath W.T.P.S.K., 2019. In vitro plant regeneration of Stevia rebaudiana through indirect organogenesis. Int. J. Bot. Stud. 4(4), 199–203.

Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4, 9.

Hassanen S.A., Khalil R.M.A., 2013. Biotechnological studies for improving of stevia (Stevia rebaudiana Bertoni) in vitro plantlets. Middle East J. Sci. Res. 14 (1), 93–106. https://doi.org/10.5829/idosi.mejsr.2013.14.1.1948

Heinz D.J., Mee G.W.P., 1971. Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am. J. Bot. 58, 257–262. https://doi.org/10.1002/j.1537-2197.1971.tb09971.x

Jaccard P., 1908. Nouvellesrechearches sur la distribution locale. Bull. Soc. Vaudoise Sci. Nat. 44, 223–270.

Jain S.M., 2001. Tissue culture-derived variation in crop improvement. Euphytica 118, 153–166. https://doi.org/10.1023/A:1004124519479

Janarthanam B., Gopalakrishnan M., Lakshmi Sai G., Sekar T., 2009. Plant regeneration from leaf derived callus of Stevia rebaudiana Bertoni. Plant Tissue Cult. Biotech. 19(2), 133–141. https://doi.org/10.3329/ptcb.v19i2.5430

Javed R., Yucesan B., Zia M., Ekrem G., 2018. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech. 20(2), 194–201. https://doi.org/10.1007/s12355-017-0539-1

Khan A., Jayanthi M., Gantasala N.P., Bhooshan N., Rao U., 2016. A rapid and efficient protocol for in vitro multiplication of genetically uniform Stevia rebaudiana (Bertoni). Indian J. Exp. Biol. 54, 477–481.

Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhari M., Sadh R.K., 2016. Somaclonal variations and their applications in horticultural crops improvement. Biotech. 6, 1–18. https://doi.org/10.1007/s13205-016-0389-7

Majumder S., Rahman S.D., 2016. Micropropagation of Stevia rebaudiana Bertoni through direct and indirect organogenesis. J. Innov. Pharmac. Biol. Sci. 13(3), 47–56.

Masri M.I., Amein M.M.M., Ranya M., Aziz A., Sayed D.O., 2019. Callogenesis and plant regeneration via in vitro culture of stevia rebaudiana explants. Egypt. J. Plant Breed. 23(1), 65–76.

Modi A.R., Patil G., Kumar N., Singh A.S., Subhash N.A., 2012. Simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fideli-ty of in vitro raised plants through RAPD. Sugar Tech. 14, 391–397. https://doi.org/10.1007/s12355-012-0169-6

Moktaduzzaman M., Mahbubur-Rahman S.M., 2009. Regeneration of Stevia rebaudiana and analysis of somaclonal variation by RAPD. Biotechnology 8(4), 449–455. https://doi.org/10.3923/biotech.2009.449.455

Mubarak M.H., Belal A.H., EL-Geddawy I.H., Eman I., Sarag E.L., Nasr M.I., 2008. Micropropagation of Stevia rebaudiana in vitro. Meeting the challenges of sugar crops and integrated industries in developing countries. Al Arish, Egypt, 293–298.

Murashige T., Skoog F.A., 1962. Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497.

Patel R. M., Shah R.R., 2009. Regeneration of stevia plant through callus culture. Indian. J. Pharm. Sci. 71(1), 46–50. https://doi.org/ 10.4103/0250-474X.51954

Predieri S., 2001. Mutation induction and tissue culture in improving fruits. Plant Cell. Tissue Organ Cult. 64, 185–210. http://dx.doi.org/10.1023/A:1010623203554

Preethi D., Sridhar T.M., Naidu C.V., 2011. Efficient protocol for indirect shoot regeneration from leaf explants of Stevia rebaudiana (Bert.) – an important calorie free biosweetner. J. Phytol. 3(5), 56–60.

Razak U.N.A.A., Ong C.B., Yu T.S., Lau L.K., 2014. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Braz. Arch. Biol. Technol. 1, 23–28. https://doi.org/10.1590/S1516-89132014000100004

Samuel P., Ayoob K.T., Magnuson B.A., Wölwer-Rieck U., Jeppesen P.B., Rogers P.J., Row-land I., Mathews R., 2018. Stevia leaf to stevia sweetener: exploring its science, benefits, and future potential. J. Nutr. 148, 1186S–1205S. https://doi.org/10.1093/jn/nxy102

Sarmah D., Sutradhar M., Singh B.K., 2017. Somaclonal variation and its’ application in ornamentals plants. Int. J. Pure Appl. Biosci. 5, 396–406. https://doi.org/10.18782/2320-7051.2762

Shah S.H., Ali S., Jan S.A., Din J., Ali G.M., 2015. Callus induction, in vitro shoot regeneration and hairy root formation by the assessment of various plant growth regulators in tomato (Solanumlycopersicum Mill.). J. Anim. Plant Sci. 25, 528–538.

Sharma N., Gauchan D.P., Dhakal A., Luitel A., Shakya S., Shakya R., 2015. Establishment of regenerative callus, cell suspension system and molecular characterization of Stevia rebaudiana Bertoni for the production of stevioside in in vitro. Int. J. Res. Appl. Sci. Eng. Technol. 3, 133–144.

Sharma N., Kaur R., Era V., 2016. Potential of RAPD and ISSR markers for assessing genetic diversity among Stevia rebaudiana Bertoni accessions. Indian J. Biotechnol. 15, 95–100.

Sikdar S.U., Zobayer N., Azim F., Ashrafuzzaman M., Prodhan S.H., 2012. An efficient callus initiation and direct regeneration of Stevia rebaudiana. Afr. 11(45), 10381–10387. https://doi.org/10.5897/AJB11.2363

Singh M., Saharan V., Rajpurohit D., Sen Y., Joshi A., Sharma A., 2017. Thidiazuron induced direct shoot organogenesis in Stevia rebaudiana and assessment of clonal fidelity of regenerated plants by RAPD and ISSR. Int. J. Curr. Microbiol. Appl. Sci. 6, 1690–1702. https://doi.org/10.20546/ijcmas.2017.608.203D.

Skirvin R.M., Norton M., McPheeters K.D., 1993. Somaclonal variation: has it proved useful for plant improvement. Acta Hortic. 336, 333–340.

Soliman H.I.A., Metwali E.M.R., Almaghrabi O.A.H., 2014. Micropropagation of Stevia rebaudiana Betroni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol. 31, 249–256. https://doi.org/10.5511/plantbiotechnology.14.0707a

Taleie N., Hamidoghli S., Hamidoghli Y., 2012. In vitro plantlet propagation of Stevia

rebaudiana Bertoni. South-West. J. Hortic. Biol. Environ. 3(1), 99–108. https://doi.org/10.20546/ijcmas.2017.607.122

Taware A., Mukadam S.S., Chavan A., Taware S.D., Ambedkar B., 2010. Comparative studies of in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni). Int. J. In-tegr. Biol. 9, 10–15.

Thiyagarajan M., Venkatachalam P., 2012. Evaluation of the genetic fidelity of in vitro propagated natural sweetener plant (Stevia rebaudiana Bert.) using DNA-based markers. Plant Cell Biotechnol. Mol. Biol. 13, 93–98.

Thiyagarajan M., Venkatachalam P., 2015. Assessment of genetic and biochemical diversity of Stevia rebaudiana Bertoni by DNA fingerprinting and HPLC analysis. Ann. Phytomedicine. 4, 79–85.


Opublikowane
30-12-2021



Magdalena Dyduch-Siemińska 
Department of Genetics and Horticultural Plant Breeding, Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0002-6549-7391



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.