Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Zarządzanie jakością nasion zbóż kondycjonowanych efektywnymi mikroorganizmami (EM) i światłem czerwonym (RL)

Agata Dziwulska-Hunek

Katedra Biofizyki, Uniwersytet Przyrodniczy w Lublinie

Mariusz Szymanek

Katedra Maszyn Rolniczych, Leśnych i Transportowych, Uniwersytet Przyrodniczy w Lublinie

Jacek Dziwulski

Katedra Strategii i Planowania Biznesu, Wydział Zarządzania, Politechnika Lubelska


The study pertained to environmentally-friendly methods in the cultivation of cereal, and aimed to manage the quality of rye and triticale seeds and determine the impact of seed conditioning using effective microorganisms (EM), red light (RL), and a combination of the two (RL × EM) on the yield of grain and straw. Moreover, the seeds were sown into soil with and without EM conditioning, designated as 0 and PEM. The yield fluctuations depended mostly on the studied rye and triticale cultivars. The best effects we observed in soil without EM conditioning for Dańkowskie Złote rye and Moderato triticale. The increase in grain and straw yields was, respectively: 26% (RL), 31% (RL × EM), 40% (EM), and 17% (RL × EM), 23% (RL), 32% (EM) – Dańkowskie Złote, 27% (RL × EM), 44% (EM), 46% (RL), and 17% (RL × EM), 51% (EM), 78% (RL) – Moderato. In turn, seeds exposed to the experimental treatment and sown into soil containing EM produced reduced yields in both of the above cultivars. It is noteworthy that the conditioning methods employed in the field experiment can facilitate increased yields but most importantly contribute to the resilience of agrosystems and can therefore have environmental benefits. It is noteworthy that the conditioning methods employed in the field experiment can facilitate increased yields but most importantly contribute to the resilience of agrosystems and can therefore have environmental benefits.

Słowa kluczowe:

seed quality management, effective microorganisms, halogen floodlights, rye, triticale, yield

Abatenh E., Gizaw B., Tsegaye Z., Wassie M., 2017. The Role of microorganisms in ioremediation – a review. Open J. Environ. Biol. 2, 30–46. DOI:

Abdelhafer M., Abu-Elsaoud A.M., Tuleukhanov S.T., Abdel-Kader D.Z., 2008. Effect of infra-red laser on wheat (Triticum aestivum) germination. Int. J. Agric. Res. 3, 433–438. DOI:

Bai Z., Caspari T., Gonzalez M.R., Batjes N.H., Mäder P., Bünemann E.K., De Goede R., Brussaard L., Xu M., Ferreira C.S.S., Rentam E., Fan H., Mihelič R., Glavan M., Tóth Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. DOI:

Boelt B., Shrestha S., Salimi Z., Jꬾrgensen J.R., Nicolaisen M., Carstensen J.M., 2018. Multispectral imaging – a new tool in seed quality assessment?. Seed Sci. Res. 28(3), 222–228. DOI:

Borowy A., Kapłan M., Krawiec M., 2018. Impact of effective microorganisms on weed infestation and yield of peppermint cultivated on muck-peat soil. Acta Agrobot. 71(4), 1755. DOI:

COBORU, 2022. Centralny Ośrodek Badania Odmian Roślin Uprawnych [Research Centre for Cultivar Testing], [date of access: 31.05.2022].

Cóndor_Golec A.F., Pérez G., Lokare Ch., 2007. Effective microorganisms: myt hor reality? Microorganismos eficaces: mito o realidad?. Rev. Peru. Biol. 14(2), 315–319. DOI:

Ćwintal M., Dziwulska-Hunek A., 2013. Effect of electromagnetic stimulation of alfalfa seeds. Int. Agrophys. 27, 391–401. DOI:

Drążkiewicz K., Janiak W., Najewski A., Piecuch K., Skrzypek A., Szarzyńska J., 2019. Lista opisowa odmian roślin rolniczych 2019 [Descriptive list of agricultural plant cultivars 2019]. Centralny Ośrodek Badania Odmian Roślin Uprawnych, Słupia Wielka [in Polish] [date of access: 30.04.2019].

Drozd D., Szajsner H., 2001. Efekt biostymulacji laserowej u roślin zbożowych. Biul. Inst. Hod. Aklim. Rośl. 218/219, 235–239.

Dziwulska-Hunek, A., Szymanek M., Stadnik J., 2020. Impact of pre-sowing red light treatment of sweet corn seeds on the quality and quantity of yield. Agriculture 10(165), 1–10. DOI:

Gajewski P., 2016. Influence of the EM-A preparation on the structure properties in various mineral soils. Soil Sci. Annu. 67(4), 179–184. DOI:

Gawęda D., Haliniarz M., Woźniak A., Harasim E., 2018. Yield, seed quality and nodule formation of soybean under application of effective microorganisms. Acta Agrophys. 25, 35–43. DOI:

Ghersa C.M., Martinez-Ghersa M.A., Casal J.J., Kaufman M., Roush M.L., Deregibus V.A., 1994. Effect of light on winter wheat (Triticum aestivum) and Italian Ryegrass (Lolium multiflorum) competition. Weed Technol. 8, 37–45. DOI:

Gładyszewska B., 2006. Pre-sowing laser biostimulation of cereal grains. Tech. Sci. 9, 33–38.

Gotto E., 2003. Effects of light quality on growth of crop plants under artificial lighting. Environ. Control Biol. 41(2), 121–132. DOI:

Govindaraj M., Masilamani P., Alex Albert V., Bhaskaran M., 2017. Effect of physical seed treatment on yield and quality of crops: A review. Agric. Rev. 38(1), 1–14. DOI:

Hasan M., Hanafiah M.M., Taha Z.A., Alhilfy I.H.H., Said M.N.M., 2020. Laser irradiation effects at different wavelengths on phenology and yield components of pretreated maize seed. Appl. Sci. 10, 1189, 1–12. DOI:

Hernández A.C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R., 2010. Laser in agriculture. Int. Agrophys. 24, 407–422.

Hu Ch., Qi Y., 2013. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 46, 63–67. DOI:

Jaroszewska A., Sobolewska M., Podsiadło C., Stankowski S., 2019. The effect of fertilization and effective microorganisms on buckwheat and millet. Acta Agrophys. 26(3), 15–28. DOI:

Javaid A., Bajwa R., 2011. Field evaluation of effective microorganisms (EM) application for growth nodulation and nutrition of mung bean. Turk. J. Agric. For. 35, 443–452. DOI:

Javaid A., Shah M.B.M., 2010. Growth and yield response of wheat to EM (effective microorganisms) and parthenium green manure. Afr. J. Biotechnol. 9(23), 3373–3381.

Joshi H., Somduttand Choudhary P., Mundra S.L., 2019. Role of effective microorganisms (EM) in sustainable agriculture. Int. J. Curr. Microbiol. App. Sci. 8(3), 172–181. DOI:

Jyoti, Malik C.P., 2013. Seed deterioration: a review. Int. J. Life Sci. Biotechnol. Pharma Res. 2(3), 374–385.

Kataria S., Baghel L., Guruprasad K.N., 2017. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 10, 83–90. DOI:

Khare E., Arora N.K., 2014. Effects of soil environment on field efficacy of microbial inoculants. In Plant Microbes Symbiosis: Applied Facets, Springer, New Delhi, 353–381. DOI:

Mayer J., Sceid S., Widmer F., Fließbach A., Oberholzer H.R., 2010. How effective are ‘Efective Microorganisms (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239. DOI:

Michtchenko A., Hernández M., 2010 Photobiostimulation of germination and early growth of wheat seeds (Triticum aestivum L) by a 980 nm semiconductor laser. Rev. Cub. Fís. 27(2B), 271–274.

Matwijczuk A., Kornarzyński K., Pietruszewski S., 2012. Effect of magnetic field on seed germination and seedling growth of sunflower. Int. Agrophys. 26(3), 271–278. DOI:

Muszyński S., Gagoś M., Pietruszewski S., 2009. Short-term pre-germination exposure to ELF magnetic field does not influence seedling growth in Durum Wheat (Triticum durum). Pol. J. Environ. Stud. 18, 1065–1072.

Pietruszewski S., Muszyński S., Dziwulska A., 2007. Electromagnetic fields and electromagnetic radiation as non-invasive external simulations for seeds (selected methods and responses). Int. Agrophys. 21, 95–100.

Piskier T., 2006. Reaction of spring wheat to the application of bio-stimulators and soil absorbents. J. Re. Appl. Agric. Engin. 51(2), 136–138.

Qiu Z., Yuan M., He Y., Li Y., Zhang L. 2017. Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci. Rep. 7, 1–12. DOI:

Radkowski A., Radkowska I., 2018. Influence of effective microorganisms on the dry matter yield and chemical composition of meadow vegetation. J. Elem. 23(2), 509–520. DOI:

Rajjou L., Lovigny Y., Job C., Belghazi M., Groot S., Job D., 2006. Seed quality and germination. In: S. Adkins, S. Ashmore, S. Navie (eds.), Seeds: biology, development and ecology. CAB International, 324–331. DOI:

Rao N.K., Dulloo M.E., Engels J.M.M., 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. DOI:

Sangakkara R., Wijesinghe D., Attanayake K.B., 2014. Soil quality and crop yields as affected by microbial inoculants in nature farming. In: G. Rahmann, U. Aksoy (eds.), Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13–15 OCt., Istanbul, Turkey, 987–990.

Singh J., 2018. Role of earthworm in sustainable agriculture. In: C.M. Galanakis (ed.), Sustainable food systems from agriculture to industry. Improving production and processing, Academic Press, London, 83–122. DOI:

Seran T.H., Suthamathy N., 2013. Effect of combined application of cattle manure and EM on the yield and yield components of groundnut (Arachis hypogaea L.). Bangladesh J. Agril. Res. 38(1), 1–9. DOI:

Sulkiewicz M., Ciereszko I., 2016. Fluorescencja chlorofilu a – historia odkrycia i zastosowanie w badaniach roślin [Chlorophyll a fluorescence – history of discovery and pratical application in environmental plant science]. KOSMOS 65(1), 103–115.

Szymanek M., Dziwulska-Hunek A., Zarajczyk J., Michałek S., Tanaś W., 2020. The influence of red light (RL) and effective microorganism (EM) application on soil properties, yield, and quality in wheat cultivation. Agronomy 10, 1201. DOI:

Tang C.Y., Criddle C.S., Leckie J.O., 2007. Effect of flux (trans membrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nano filtration membranes treating perfluorooctane sulfonate containing waste water. Environ. Sci. Technol. 41, 2008–2014. DOI:

Tołoczko W., Trawczyńska A., Niewiadomski A., 2009. Zawartość związków próchnicznych w glebach nawożonych preparatem EM [Content of humic substances in soil fertilized with an EM preparation]. Rocz. Glebozn. 60(1), 97–101.

Truchliński J., Wesołowski M., Koper R., Dziamba S., 2002. Influence of pre-sowing red light radiation on the content of antinutritional factors, mineral elements and basic nutritional component contents in triticale seeds. Int. Agrophys. 16, 227–230.

Velten S., Leventon J., Jager N., Newig J., 2015. What is sustainable agriculture? A systematic review. Sustainability 7, 7833–7865. DOI:

Wezel A., Casagrande M., Celette F., Vian J.F., Ferrer A., Peigné J., 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. DOI:

Zarębski Z. W., Dziamba S., 1993. Sposób przedsiewnej obróbki ziarna i urządzenie do przedsiewnej obróbki ziarna [Method of and apparatus for pre-sowing treatment of grain]. Patent RP Nr P.299454.


Agata Dziwulska-Hunek 
Katedra Biofizyki, Uniwersytet Przyrodniczy w Lublinie
Mariusz Szymanek 
Katedra Maszyn Rolniczych, Leśnych i Transportowych, Uniwersytet Przyrodniczy w Lublinie
Jacek Dziwulski 
Katedra Strategii i Planowania Biznesu, Wydział Zarządzania, Politechnika Lubelska


Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.


Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.