Effect of cannabidiol on heart rate, salivary cortisol concentration and approach time in fear tests in school horses – a pilot study

Karolina Nawrot

Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biologii i Hodowli Zwierząt, Instytut Hodowli Zwierząt, ul. Chełmońskiego 38C, 51-630 Wrocław

Maria Soroko-Dubrovina

Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biologii i Hodowli Zwierząt, Instytut Hodowli Zwierząt, ul. Chełmońskiego 38C, 51-630 Wrocław
https://orcid.org/0000-0002-8585-8000

Wanda Górniak

Politechnika Wrocławska, Wydział Mechaniczny, Katedra Inżynierii Pojazdów, ul. Na Grobli 13, 50-421 Wrocław
https://orcid.org/0000-0003-0151-6642

Aleksander Górniak

Politechnika Wrocławska, Wydział Mechaniczny, Katedra Inżynierii Pojazdów, ul. Na Grobli 13, 50-421 Wrocław
https://orcid.org/0000-0003-4982-8514

Paulina Zielińska

Uniwersytet Przyrodniczy we Wrocławiu, Wydział Medycyny Weterynaryjnej, Katedra i Klinika Chirurgii, pl. Grunwaldzki 51, 50-366 Wrocław
https://orcid.org/0000-0001-6767-8367


Abstract

The aim of the study was to assess the effect of cannabidiol (CBD) on the heart rate, salivary cortisol concentration and approach time of horses subjected to fear tests. The study involved 20 Polish sport horses, divided into a research group and a control group. Research group was given 100 mg of CBD daily for 21 days. Both groups were subjected to two fear tests in three studies: before the start of supplementation, on day 10th and 11th and on day 20th and 21st of supplementation. Heart rate and saliva sampling to determine salivary cortisol levels were performed before and immediately after each fear test for both groups. In addition, the approach time to both objects was measured in both fear tests. The study showed no statistically significant difference in cortisol concentration and heart rate between the research group and the control group. There was statistically significant differences between the groups in approach time in three studies. Results of the study didn’t prove the anti-anxiety effect of CBD on the horse's body, but shortening the approach time to the object gives grounds for further research on the anti-anxiety effect of CBD in horses.

Keywords:

cannabidiol, horses, fear test, supplementation

Carroll J., Murphy C.J., Neitz M., Ver Hoeve J.N., Neitz, J., 2001. Photopigment basis for dichromatic color vision in the horse. J. Vis. 1, 80–87. https://doi.org/10.1167/1.2.2 DOI: https://doi.org/10.1167/1.2.2

Corsetti S., Borruso S., Malandrucco L., Spallucci V., Maragliano L., Perino R., D’Agostino P., Natoli E., 2021. Cannabis sativa L. may reduce aggressive behaviour towards humans in shelter dogs. Sci. Rep. 11, 2773. https://doi.org/10.1038/s41598-021-82439-2 DOI: https://doi.org/10.1038/s41598-021-82439-2

Cota D., 2007. CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab. Res. Rev. 23, 507–517. https://doi.org/10.1002/dmrr.764 DOI: https://doi.org/10.1002/dmrr.764

Crippa J.A.S., Crippa A.C.S., Hallak J.E.C., Martín-Santos R., Zuardi A.W., 2016. 19-THC intoxication by cannabidiol-enriched cannabis extract in two children with refractory epilepsy: full remission after switching to purified cannabidiol. Front. Pharmacol. 7, 359. https://doi.org/10.3389/fphar.2016.00359 DOI: https://doi.org/10.3389/fphar.2016.00359

Deiana S., Watanabe A., Yamasaki Y. Amada N., Arthur M., Fleming S., Woodcock H., Dorward P., Pigliacampo B., Close S., Platt B., Riedel G., 2012. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology 219, 859–873. https://doi.org/10.1007/s00213-011-2415-0 DOI: https://doi.org/10.1007/s00213-011-2415-0

Draeger A.L., Thomas E.P., Jones K.A., Davis A.J., Porr C.A.S., 2021. The effects of pelleted cannabidiol supplementation on heart rate and reaction scores in horses. J. Vet. Behav. 46, 97–100. https://doi.org/10.3390/ani13020245 DOI: https://doi.org/10.1016/j.jveb.2021.09.003

Gardner E.L., 2005. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol. Biochem. Behav. 81, 263–284. https://doi.org/10.1016/j.pbb.2005.01.032 DOI: https://doi.org/10.1016/j.pbb.2005.01.032

Goodwin D., 2007. Horse behaviour: evolution, domestication and feralisation. W: N. Waran (red.), The welfare of horses. Animal Welfare, t. 1. Springer, Dordrecht, 1–18. https://doi.org/10.1007/978-0-306-48215-1_1 DOI: https://doi.org/10.1007/978-0-306-48215-1_1

Harewood E.J., McGowan C.M., 2005. Behavioral and physiological responses to stabling in naive horses. J. Equine Vet. Sci. 25, 164–170. https://doi.org/10.1016/j.jevs.2005.03.008 DOI: https://doi.org/10.1016/j.jevs.2005.03.008

Hill E., Bryne W.L., 2021. 135 safety and behavioural effects of cannabidiol applied as an oral administration in horses. J. Equine Vet. Sci. 100, 103598. https://doi.org/10.1016/j.jevs.2021.103598 DOI: https://doi.org/10.1016/j.jevs.2021.103598

Iffland K., Grotenhermen F., 2017. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2, 139–154. https://doi.org/10.1089/can.2016.0034 DOI: https://doi.org/10.1089/can.2016.0034

Jamshidi N., Taylor D.A., 2001. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 134, 1151–1154. https://doi.org/10.1038/sj.bjp.0704379 DOI: https://doi.org/10.1038/sj.bjp.0704379

Jean-Gilles L., Braitch M., Latif M.L., Edwards L.J., Robins R.A., Tanasescu R., 2015. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells. Acta Physiol. 214, 63–74. https://doi.org/10.1111/apha.12474 DOI: https://doi.org/10.1111/apha.12474

Jones K., Thomas E., Draeger A., Porr S., 2019. Cannibidiol (CBD) supplementation in horses: a pilot study. Huston School of Agriculture, Murray State University.

Joshi N., Onaivi E.S., 2019. Endocannabinoid system components: overview DOI: https://doi.org/10.1007/978-3-030-21737-2_1

and tissue distribution. Adv. Exp. Med. Biol. 1162, 1–12. https://doi.org/10.1007/978-3-030-21737-2_1 DOI: https://doi.org/10.1007/978-3-030-21737-2_1

Luedke C., Wilhelm T., 2021. Cannabinoids in equine medicine. W: S. Cital., K. Kramer, L. Hughston, J.S. Gaynor (red.), Cannabis therapy in veterinary medicine. Springer, Cham, 265–305. https://doi.org/10.1007/978-3-030-68317-7_12 DOI: https://doi.org/10.1007/978-3-030-68317-7_12

Moons C.P.H., Laughlin K., Zanella A.J., 2005. Effects of short-term maternal separations on weaning stress in foals. Appl. Anim. Behav. Sci. 91, 321–335. https://doi.org/10.1016/j.applanim.2004.10.007 DOI: https://doi.org/10.1016/j.applanim.2004.10.007

Pagotto U., Marsicano G., Cota D., Lutz B., Pasquali R., 2006. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 27, 73–100. https://doi.org/10.1210/er.2005-0009 DOI: https://doi.org/10.1210/er.2005-0009

Peeters M., Sulon J., Serteyn D., Vandeheede M., 2010. Assessment of stress level in horses during competition using salivary cortisol: preliminary studies. J. Vet. Behav. Clin. Appl. Res. 5, 216. https://doi.org/10.1016/j.jveb.2009.10.043 DOI: https://doi.org/10.1016/j.jveb.2009.10.043

Rietmann T.R., Stuart A.E.A., Bernasconi P., Stauffacher M., Auer J.A., Weishaupt M.A., 2004. Assessment of mental stress in warmblood horses: heart rate variability in comparison to heart rate and selected behavioural parameters. Appl. Anim. Behav. Sci. 88, 121–136. https://doi.org/10.1016/j.applanim.2004.02.016 DOI: https://doi.org/10.1016/j.applanim.2004.02.016

Russo E.B., Burnett A., Hall B., Parker K.K., 2005. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem. Res. 30, 1037–43. https://doi.org/10.1007/s11064-005-6978-1 DOI: https://doi.org/10.1007/s11064-005-6978-1

Schiavon A.P, Bonato J.M., Milani H., Guimarães F.S., Weffort de Oliveira R.M., 2016. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuro. Biol. Psychiatry 4, 27–34. https://doi.org/10.1016/j.pnpbp.2015.06.017 DOI: https://doi.org/10.1016/j.pnpbp.2015.06.017

Schmidt A., Möstl E., Wehnert C., Aurich J., Müller J., Aurich C., 2010. Cortisol release and heart rate variability in horses during road transport. Horm. Behav. 57, 209–215. https://doi.org/10.1016/j.yhbeh.2009.11.003 DOI: https://doi.org/10.1016/j.yhbeh.2009.11.003

Shirtcliff E.A., Buck R.L., Laughlin M.J., Hart T., Cole C.R., Slowey P.D., 2015. Salivary cortisol results obtainable within minutes of sample collection correspond with traditional immunoassays. Clin. Ther. 37(3), 505–514. https://doi.org/10.1016/j.clinthera.2015.02.014 DOI: https://doi.org/10.1016/j.clinthera.2015.02.014

Silver R.J., 2019. The endocannabinoid system of animals. Animals 9, 686. https://doi.org/10.3390/ani9090686 DOI: https://doi.org/10.3390/ani9090686

Soroko M., Howell K., Zwyrzykowska A., Dudek K., Zielińska P., Kupczyński K., 2016. Maximum eye temperature in the assessment of training in racehorses: correlations with salivary cortisol concentration, rectal temperature, and heart rate. J. Equine Vet. Sci. 45, 39–45. https://doi.org/10.1016/j.jevs.2016.06.005 DOI: https://doi.org/10.1016/j.jevs.2016.06.005

Weibel L., 2003. Methodological guidelines for the use of salivary cortisol as biological marker of stress. Presse Med. 32, 845–851.

Zeitler-Feicht M.H., 2014. Zachowania koni, przyczyny, terapia i profilaktyka. Świadome Jeździectwo, Warszawa.

Zieba J., Sinclair D., Sebree T., Bonn-Miller M., Gutterman D., Siegel S., Karl T., 2019. Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol. Biochem. Behav. 181, 93–100. 10.1016/j.pbb.2019.05.002 DOI: https://doi.org/10.1016/j.pbb.2019.05.002

Zuardi A.W., 2006. History of cannabis as a medicine: a review. Braz. J. Psychiatry 28, 153–157. https://doi.org/10.1590/s1516-44462006000200015 DOI: https://doi.org/10.1590/S1516-44462006000200015


Published
2023-12-15



Karolina Nawrot 
Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biologii i Hodowli Zwierząt, Instytut Hodowli Zwierząt, ul. Chełmońskiego 38C, 51-630 Wrocław
Maria Soroko-Dubrovina 
Uniwersytet Przyrodniczy we Wrocławiu, Wydział Biologii i Hodowli Zwierząt, Instytut Hodowli Zwierząt, ul. Chełmońskiego 38C, 51-630 Wrocław https://orcid.org/0000-0002-8585-8000
Wanda Górniak 
Politechnika Wrocławska, Wydział Mechaniczny, Katedra Inżynierii Pojazdów, ul. Na Grobli 13, 50-421 Wrocław https://orcid.org/0000-0003-0151-6642
Aleksander Górniak 
Politechnika Wrocławska, Wydział Mechaniczny, Katedra Inżynierii Pojazdów, ul. Na Grobli 13, 50-421 Wrocław https://orcid.org/0000-0003-4982-8514
Paulina Zielińska 
Uniwersytet Przyrodniczy we Wrocławiu, Wydział Medycyny Weterynaryjnej, Katedra i Klinika Chirurgii, pl. Grunwaldzki 51, 50-366 Wrocław https://orcid.org/0000-0001-6767-8367



License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

From 2022 articles are made available under Creative Commons Attribution 4.0 International licence (CC BY 4.0). Articles published before 2022 are available under Creative Commons Attribution – Non-commercial use – No derivative works  4.0 International licence (CC BY-NC-ND 4.0).

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.