Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 28 Nr 1 (2018)

Articles

Występowanie populacji wybranych mikroorganizmów w środowisku glebowym orzecha włoskiego (Juglans regia L.)

DOI: https://doi.org/10.24326/ah.2018.1.1
Przesłane: stycznia 4, 2019
Opublikowane: 2018-03-04

Abstrakt

W ogrodach, a także na terenie plantacji produkcyjnych w Polsce występuje szereg odmian orzecha włoskiego (Juglans regia L.). W trakcie sezonu wegetacyjnego drzewa te wydzielają do środowiska semiozwiązki o charakterze lotnych i nielotnych wtórnych metabolitów. Przeważają wśród nich związki fenolowe, flawonoidy, naftochinony i terpenoidy. W literaturze przedmiotu istnieją tylko szczątkowe dane dotyczące roli tych metabolitów w interakcjach środowiskowych. Dlatego celem niniejszej pracy było zbadanie, czy na mikroorganizmy glebowe wpływa środowisko glebowe orzecha włoskiego. Badania izolacji mikroorganizmów glebowych przeprowadzono na selektywnych podłożach mikrobiologicznych: agarze Czapek-Doxa (BTL), agarze Sabourauda z chloramfenikolem i agarze odżywczym. Wykazano, że wtórne metabolity orzecha włoskiego przedostające się do gleby w znacznym stopniu mogą wpływać na ilość mikroorganizmów występujących w glebie, ponieważ utrzymują liczbę bakterii na stałym poziomie oraz sukcesywnie zmniejszają liczbę grzybów.

Bibliografia

Berendsen R.L., Pieterse C.M., Bakker P.A., 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486.

Berg G., Smalla K., 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13.

Berry D.F., Boyd S.A., 1985. Decontamination of soil through enhanced formation of bound residues. Environ. Sci. Tech. 19, 1132–1133.

Chopra R.N., Nayar S.I., Chopra R.C., 1986. Glossary of Indian medicinal plants (including the Supplement). Council of Scientific & Industrial Research, New Delhi, ss. 11.

Christopoulos M.V., Tsantili E., 2015. Oil composition in stored walnut cultivars – quality and nutritional value. Eur. J. Lipid Sci. Techn. 117, 338–348, DOI: 10.1002/ejlt.201400082.

Chrzanowski G., Leszczyński B., Czerniewicz P., Sytykiewicz H., Matok H., Krzyżanowski R., 2011. Phenolic acids of walnut (Juglans regia L.). Herba Pol. 57(2), 22–29.

Dudareva N., Negre F., Nagegowda D.A., Orlova I., 2006. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440.

Ebrahimi A., Zarei A., Fatahi R., Ghasemi Varnamkhasti M., 2009. Study on some morphological and physical attributes of walnut used in mass models. Sci. Hortic. 121, 490–494.

Fuernkranz M., Lukesch B., Müller H., Huss H., Grube M., Berg G., 2012. Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb. Ecol. 63, 418–428.

Gao Y., Jin Y.J., Li H.D., Chen H.J., 2005. Volatile organic compounds and their roles in bacteriostasis in five conifer species. J. Integr. Plant Biol. 47,499–507.

Gevao B., Semple K.T., Jones K.C., 2000. Bound pesticide residues in soils: a review. Environ. Poll. 108, 3–14.

Grabińska-Łoniewska A., Słomczyński T., Pajor E., Kołosowska K., 1996. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses. Acta Mycol. 31(1), 67–75.

Guenther A., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger L., Lerdau M., Mckay W.A., 1995. A global-model of natural volatile organic-compound emissions. J. Geophys. Res. Atmos. 100, 8873–8892.

Huang M., Sanchez-Moreiras A.M., Abel C., Sohrabi R., Lee S., Gershenzon J., Tholl D., 2012. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008.

Ibekwe A.M., Grieve C.M., 2004. Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 48, 239–248.

Jakopic J., Solar A., Colaric M., Hudina M., Veberic R., Stampar F., 2008. The influence of ethanol concentration on content of total and individual phenolics in walnut alcoholic drink. Acta Aliment. 37, 233–239.

Junker R.R., Tholl D., 2013. Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. J. Chem. Ecol. 39(7), 810–825.

Junker R.R., Loewel C., Gross R., Dötterl S., Keller A., Blüthgen N., 2011. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 13, 918–924.

Kalemba D., Kunicka A., 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813–829.

Khan S.U., 1982. Bound pesticide residues in soil and plants. Residue Rev. 84, 1–25.

Kozak A., Leszczyński B., Sempruch C., Sytykiewicz H., 2014. Allelopatyczne oddziaływanie juglonu. Kosmos 63(4), 611–622.

Kris-Etherton P.M., Yu-Poth S., Sabate J., Ratcliffe H.E., Zhao G., Etherton T.D., 1999. Nuts and their bioactive consituents: effects on serum lipids and other factors that affect disease risk. Am. J. Clin. Nutr. 70(3), 504S–511S.

Krzyżanowski R., 2016. Wpływ lotnych związków orzecha włoskiego Juglans regia L. na zachowanie mszyc Panaphis juglandis (Goeze, 1778) i Chromaphis juglandicola (Kaltenbach, 1843). Wyd. UPH w Siedlcach, Siedlce.

Labuckas D.O., Maestri D.M., Perello M., Martinez M.L., Lamarque A.L., 2008. Phenolics from walnut (Juglans regia L.) kernels: antioxidant activity and interactions with proteins. Food Chem. 107(2), 607–612.

Lindow S.E., Brandl M.T., 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883.

Matok H., 2010. Wpływ wybranych metabolitów wtórnych orzecha włoskiego (Juglans regia) na kiełkowanie roślin. Praca doktorska, UPH w Siedlcach.

Matsui K., 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9, 274–280.

Montenegro R.C., Araujo A.J., Molina M.T., Marinho Filho J.D.B., Rocha D.D., Lopez-Montero E., Goulart M.O.F., Bento E.S., Alves A.P.N.N., Pessoa C., De Moraes M.O., Costa-Lotuflo L.V., 2010. Cytotoxic activity of naphthoqui¬nones with special emphasis on juglone and its 5-O-methyl derivative. Chem.-Biol. Interact 184, 439–448.

Nour V., Trandafir I., Cosmulescu S., 2013. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chrom. Sci. 51, 883–890.

Patel R., Rajkumar S., 2009. Isolation and characterization of phenol degrading yeast. J. Basic Microbiol. 49(2), 216–219.

Pelvan E., Öktem Olgunb E., Karadağa A., Alasalvar C., 2018. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 244, 102–108.

Pereira J.A., Oliveira I., Sousa A., Ferreira I., Bento A., Estevinho L., 2008. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxic. 46(6), 2103–2111.

PN-89/Z-04111/03:1989. Ochrona czystości powietrza. Badania mikrobiologiczne. Oznaczanie liczy grzybów mikroskopowych w powietrzu atmosferycznym (imisja) przy pobieraniu próbek metodą aspiracyjną i sedymentacyjną.

Rather M.A., Dar B.A., Dar M.Y., Wani B.A., Shah W.A., Bhat B.A., Ganai B.A., Bhat K.A., Anand R., Qurishi M.A., 2012. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine 19, 1185–1190.

Seco R., Penuelas J., Filella I., 2007. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 41, 2477–2499.

Selvi K.B., Paul J.J.A., Vijaya V., Saraswathi K. 2017. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochem. Mol. Biol. J. 3(1), DOI: 10.21767/2471-8084.100029.

Tripathi N.N., Mishra A.K., Tripathi S., 2011. Antibacterial potential of plant volatile oils: A review. Proc. Nat. Acad. Sci. India, Sect. B Biol. Sci. 81, 23–68.

Utama I.M.S., Wills R.B.H., Ben-Yehoshua S., Kuek C., 2002. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 50, 6371–6377.

Verma R.S., Padalia R.C., Chauhan A., Thul S.T., 2013. Phytochemical analysis of the leaf volatile oil of walnut tree (Juglans regia L.) from western Himalaya. Ind. Crops Prod. 42, 195–201.

Vieira F.C.S., Nahas E., 2005. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol. Res. 160, 197–202.

Von Kiparski G.R., Lee L.S., Gillespie A.R., 2007. Occurrence and fate of the phytotoxin juglone in alley soils under black walnut trees. J. Environ. Qual. 36, 709–717.

Vorholt J.A., 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840.

Downloads

Download data is not yet available.