Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 2 (2014)

Articles

The effects of temperature on the development of the moth Acrobasis advenella (Zinck.) in the laboratory

Submitted: May 8, 2019
Published: 2014-06-28

Abstract

To clarify the biological characteristics of A. advenella and to establish a forecasting for the pest, the growth duration of individual stages and the developmental threshold temperature for A. advenella have been investigated. For the same developmental stages, the development duration significantly decreased as the temperature was increased from 22 to 26°C. At the temperature of 10°C females do not lay eggs, and the reared caterpillars and pupae died. The duration of the embryonic developmental stage in the tested ranges of temperatures was between 9.3 (26°C) to 25 days (14°C). The rate of 1st stage larvae development at the temperature of 26°C was the shortest – 10 days. The longest development of larvae was observed at the temperature of 14°C – 17 days. At the temperature of 26°C the development of the larvae of the 2nd instar lasted the shortest – 6 days. The longest developmental stage of larvae was observed at the temperature of 14°C – 8.9 days. Laboratory rearing showed that older larvae – of the 3rd and 4th stages developed the shortest at the temperature of 26°C (3.3 and 12 days, respectively). The longest developmental stage of larvae was observed at the 14°C and it was 11.5 days for the 3rd and 32 days for the 4th instar. The duration of the pupae development in the tested ranges of temperatures ranged between 15 (26°C) to 36.5 days (14°C). This information may be used to establish the dates of this pest control.

References

Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Hartley S., Jones T.H., Lindroth R.L., Press M.C., Symioudis I., Waltt A.D., Whittaker J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8 (1), 1–16.

Danks H.V., 2002. The range of insect dormancy responses. Eur. J. Entomol. 99 (2), 127–142.

Fantinou A., Perdikis D., Zota O., 2004. Reproductive responses to photoperiod and temperature by diapausing and nondiapausing populations of Sesamia nonagrioides Lef. (Lepidoptera – Noctuidae). Physiol. Entomol. 29, 169–175.

Goater B., 1986. British Pyralid Moths. A Guide to their Identification. Harley Books, 175 pp.

Górska-Drabik E., 2009. Trachycera advenella (Zinck.) (Lepidoptera, Pyralidae) – nowy szkodnik aronii czarnoowocowej. Prog. Plant Prot. 49 (2), 531–534.

Górska-Drabik E., 2013a. Występowanie Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae, Phycitinae) na aronii czarnoowocowej w Polsce i jego biochemiczne powiązania z roślinami żywicielskimi. Rozpr. Nauk. UP w Lublinie 382, 121 pp.

Górska-Drabik E., 2013b. Omacnica jarzębinianka – szkodnik aronii. Jagodnik 5, 64–65.

Górska-Drabik E., 2014. Omacnica jarzębinianka zagraża aronii czarnoowocowej. In: X Międzynarodowa Konferencja Sadownicza. „Aktualności w produkcji owoców jagodowych i pestkowych”, Kraśnik, 49–51.

Harman H.M., Dymock J.J., Syrett P., 1990. Temperature and development of Cinnabar Moth, Tyria jacobaeae (Lepidoptera: Arctiidae), in New Zealand. In: Proceedings of the VII International Symposium on Biological Control of Weeds. Rome/CSIRO, Melbourne, pp. 119–126.

Infante F. 2000. Development and population growth rates of Prorops nasnta (Hym., Bethylidae) at constant temperatures. J. Appl. Entomol. 124, 343–348.

Ipekdal K., Çağlar S.S., 2012. Effects of temperature on the host preference of pine processionary caterpillar Thaumetopoea wilkinsoni Tams, 1924 (Lepidoptera: Notodontidae). Turk. J. Zool. 36 (3), 319–328.

Jalali M.A., Tirry L., Arbab A., De Clercq P., 2010. Temperature-dependent development of the two-spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. J. Insect. Sci. 10, 124.

Jakubowska M., Walczak F., 2008. Wpływ temperatury i wilgotności powietrza na wybrane stadia rozwojowe rolnicy zbożówki (Agrotis segetum Schiff.) dla potrzeb prognozowania krótkoterminowego. Prog. Plant Prot. 48 (3), 859–863.

Johnson J.A., Wofford P.L., Whitehand L.C., 1992. Effect of diet and temperature on development rates, survival and reproduction of the Indianmeal moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 85 (2), 561–566.

Ju R.T., Wang F., Li B., 2011. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. J. Insect. Sci. 11, 16.

Kang L., Chen B., Wei J.N., Liu T.X., 2009. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu. Rev. Entomol. 54, 127–145.

Karolewski P., Grzebyta J., Oleksyn J., Giertych M.J., 2007. Effects of temperature on larval survival rate and duration of development of Lymantria monacha (L.) on needles of Pinus silvestris (L.) and of L. dispar (L.) on leaves of Quercus robur (L.). Pol. J. Ecol. 55 (3), 595–600.

Li W.X., Li J.C., Coudron T.A., Lu X.Y., Pan W.L., Liu X.X., Zhang Q.W., 2008. Role of photoperiod and temperature in diapause induction of endoparasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am. 101 (3), 613–618.

Li L.T., Wang Y.Q., Ma J.F., Liu L., Hao Y.T., Dong C., Gan Y.J., Dong Z.P., Wang Q.Y., 2013. The effects of temperature on the development of the moth Athetis lepigone, and a prediction of field occurrence. J. Insect. Sci. 13, 103.

Limonta L., Sulo J., Locatelli D.P., 2010. Temperature-dependent development and survivorship of Idaea inquinata (Scopoli) (Lepidoptera, Geometridae) eggs at two humidity levels. J. Ent. Acar. Res. 42 (3), 153–160.

Menéndez R., 2007. How are insects responding to global warming? Tijdschr.Entomol. 150, 355–365.

Mervat K.A.A., 2013. Relationship between temperature and some biological aspects and biochemical of Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Egypt. Acad. J. Biolog. Sci. 6 (1), 11–20.

Miller W.E., 2011. Temperature-dependent development in capital-breeding Lepidoptera. J. Lepid. Soc. 65 (4), 227–248.

Palm E., 1986. Nordeuropas Pyralider. Fauna Bøger, Københawn, 287 pp, Danmarks Dyreliv, vol. 3.

Qureshi M.H., Murai T., Yoshida H., Shiraga T., Tsumuki H., 1999. Effects of photoperiod and temperature on development and diapause induction in the Okayama population of Helicoverpa armigera (Hb.) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 34 (3), 327–331.

Ruszkowska M., Węgorek P., Strażyński P., Wachowiak H., 2011. Czynniki abiotyczne w rozwoju mszyc – wybrane przykłady. Prog. Plant Prot. 51 (1), 196-203.

Slamka F., 1997. Die Zünslerartigen (Pyraloidea) Mitteleuropas. Bratislava, 112 pp., 55 + 13 pls.

Subramanyam B., Hagstrum D.W., 1993. Predicting development times of six stored-product moth species (Lepidoptera: Pyralidae) in relation to temperature, relative humidity, and diet. Eur. J. Entomol. 90, 51–64.

Szujecki A., 1998. Entomologia leśna. Vol. 1, Warszawa, Wyd. SGGW, 389 pp.

Taveras R., Hilje L., Carballo M., 2004. Development of Hypsipyla grandella (Zeller) (Lepidoptera: Pyralidae) in response to constant temperatures. Neotrop. Entomol. 33 (1), 1–6.

Walczak F., 2003. Wykorzystanie metody regresji wielokrotnej przy wyznaczaniu optymalnego terminu chemicznej ochrony zbóż przed skrzypionkami (Oulema spp.) w Wielkopolsce. Rozpr. Nauk. Inst. Ochr. Roślin 12, 123 pp.

Wang X.P., Yang Q.S., Zhou X.M., Xu S., Lei C.L., 2009. Effects of phtoperiod and temperature on diapause induction and termination in the swallowtail, Sericinus montelus. Physiol. Entomol. 34 (2), 158–162.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.