Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 75 Nr 3 (2020)

Artykuły

Kontrola obecności mykotoksyn w produktach rolniczych i żywności. Cz. II. Praca przeglądowa

DOI: https://doi.org/10.24326/as.2020.3.3
Przesłane: 2 października 2020
Opublikowane: 02-10-2020

Abstrakt

Wzrost świadomości społeczeństwa w zakresie jakości i bezpieczeństwa żywności wynika przede wszystkim z postępu naukowego. Bezpieczny produkt albo nie stwarza żadnego niebezpieczeństwa, albo stwarza mało zagrożeń, które są uważane za akceptowalne w ramach wysokiego poziomu ochrony zdrowia i bezpieczeństwa ludzi. Można wymienić wiele substancji, których obecność w żywności jest niepożądana. Szczególnie niebezpiecznymi dla zdrowia i życia człowieka są metabolity grzybów strzępkowych określane mianem mykotoksyn. Jest to grupa związków bardzo zróżnicowanych pod względem chemicznym, co utrudnia analizę obecności tych substancji w różnorodnych próbkach pochodzenia rolniczego, w tym w żywności i paszach. W pracy zawarto przegląd literatury na temat metod oznaczania mykotoksyn z zastosowaniem różnych technik analitycznych jak: chromatografia cienkowarstwowa (TLC), wysokosprawna chromatografia cieczowa (HPLC) i chromatografia gazowa (GC) z różnymi wariantami detekcji oraz spektroskopia w bliskiej podczerwieni (NIR). Ponadto przedstawiono zastosowanie testów immunoenzymatycznych i metod opartych na biologii molekularnej, które stanowią alternatywne rozwiązania w stosunku do metod chromatograficznych.

Bibliografia

  1. Ahmad B., Ashiq S., Hussain A., Bashir S., Hussain M., 2014. Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Fungal. Biol. 118(9–10),776–784. https://doi.org/10.1016/j.funbio.2014.06.002
  2. Aiko V., Mehta A., 2016. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech 6(2), 159. https://doi.org/10.1007/s13205-016-0476-9
  3. Ali N., Hashim N.H., Saad B., Safan K., Nakajima M., Yoshizawa T., 2005. Evaluation of a method to determine the natural occurrence of aflatoxins in commercial traditional herbal medicines from Malaysia and Indonesia. Food Chem. Toxicol. 43(12), 1763–1772. https://doi.org/10.1016/j.fct.2005.05.019
  4. Ali N., Hashim N.H., Shuib N.S., 2015. Natural occurrence of aflatoxins and ochratoxin A in processed spices marketed in Malaysia. Food Addit. Contam. Part A 32(4), 518–532. https://doi.org/10.1080/19440049.2015.1011712
  5. Annesley T.M., 2003. Ion Suppression in Mass Spectrometry. Clin. Chem. 49(7), 1041–1044. https://doi.org/10.1373/49.7.1041
  6. AOAC, 1998. Official Methods of Analysis. Association of the Official Analytical Chemists, Arlington, VA, USA.
  7. Aquino S., Gonçalez E., Rossi M., De Campos N., Reis T.A. dos, Corrêa B., 2010. Evaluation of Fungal Burden and Aflatoxin Presence in Packed Medicinal Plants Treated by Gamma Radiation. J. Food Prot. 73(5), 932–937. https://doi.org/10.4315/0362-028X-73.5.932
  8. Banerjee S., Mazumdar S., 2012. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 1–40. https://doi.org/10.1155/2012/282574
  9. Berardo N., Pisacane V., Battilani P., Scandolara A., Pietri A., Marocco A., 2005. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agric. Food Chem. 53(21), 8128–8134. https://doi.org/10.1021/jf0512297
  10. Berthiller F., Schuhmacher R., Buttinger G., Krska R., 2005. Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1062(2), 209–216. https://doi.org/10.1016/j.chroma.2004.11.011
  11. Biselli S., Hartig L., Wegner H., Hummert C., 2004. Analysis of Fusarium Toxins using LC/MS-MS. LC/GC-Europe 17(11a), 25–30
  12. Błajet-Kosicka A., 2014. Zastosowanie techniki LC-MS/MS w oznaczaniu wybranych mikotoksyn fuzaryjnych. Politechnika Gdańska, Gdańsk.
  13. Braicu C., Puia C., Bodoki E., Socaciu C., 2008. Screening and quantification of aflatoxins and ochratoxin a in different cereals cultivated in Romania using thin-layer chromatography-densitometry. J. Food Qual., 31(1), 108–120. https://doi.org/10.1111/j.1745-4557.2007.00187.x
  14. Bugno A., Almodovar A.A.B., Pereira T.C., Pinto T. de J.A., Sabino M., 2006. Occurrence of toxigenic fungi in herbal drugs. Brazilian J. Microbiol. 37(1), 47–51. https://doi.org/10.1590/S1517-83822006000100009
  15. Cao J., Zhou S., Kong W., Ma X., Yang M., Wan L., Yang S., 2014. Simultaneous determination of aflatoxins B1, B2, G1, G2 in Fructus Bruceae by high-performance liquid chromatography with online postcolumn photochemical derivatization. J. Sep. Sci. 37(19), 2771–2778. https://doi.org/10.1002/jssc.201400501
  16. Cao J., Zhou S., Kong W., Yang M., Wan L., Yang S., 2013. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in ginger and LC-MS/MS confirmation. Food Control 33(2), 337–343. https://doi.org/10.1016/j.foodcont.2013.03.023
  17. Castillo M.-Á., Montes R., Navarro A., Segarra R., Cuesta G., Hernández E., 2008. Occurrence of deoxynivalenol and nivalenol in Spanish corn-based food products. J. Food Compos. Anal. 21(5), 423–427. https://doi.org/10.1016/j.jfca.2008.03.009
  18. Castro L., Vargas E.A., 2001. Determining aflatoxins B1, B2, G1, and in maize using Florisil cleanup with thin layer chromatography and visual and densitometric quantification. Ciência Tecnol. Aliment. Campinas 21, 115–122.
  19. Cegielska-Radziejewska R., Szablewski T., Karolczak K., Kaczmarek A., Kojowski J., 2009. Nauk. Przyr. Technol. 3(4), 1–9.
  20. Cho S., Lee C., Jang M., Son Y., Lee S., Choi I., Kim S., Kim D., 2008. Aflatoxins contamination in spices and processed spice products commercialized in Korea. Food Chem. 107(3), 1283–1288. https://doi.org/10.1016/j.foodchem.2007.08.049
  21. D’Ovidio K., Trucksess M., Weaver C., Horn E., Mcintosh M., Bean G., 2006. Aflatoxins in ginseng roots. Food Addit. Contam. 23(2), 174–180. https://doi.org/10.1080/02652030500442524
  22. Delgado S., Núñez F., Sánchez B., Bermúdez E., Rodríguez J.M., 2011. Toxigenic microorganisms in medicinal plants used for ritual protection of infants. Food Res. Int. 44(1), 304–309. https://doi.org/10.1016/j.foodres.2010.10.015
  23. European Pharmacopoeia Commission, 2016. Determination of aflatoxin B1 in herbal drugs. European Pharmacopoeia. 9th ed., Council of Europe, Strasbourg, France, s. 289.
  24. Ezekwesili-Ofili J., Onyemelukwe N., Agwaga P., Orji I., 2014. The Bioload and Aflatoxin Content of Herbal Medicines from Selected States in Nigeria. African J. Tradit. Complement. Altern. Med. 11(3), 143. https://doi.org/10.4314/ajtcam.v11i3.21
  25. Fazekas B., Tar A., Kovács M., 2005. Aflatoxin and ochratoxin A content of spices in Hungary. Food Addit. Contam. 22(9), 856–863. https://doi.org/10.1080/02652030500198027
  26. Garduno Garcia J.I., Moreno M.C., Rojo Callejas F., Velasco S.R., 2017. Detection of Aflatoxins, Mutagens and Carcinogens in Black, White and Green Peppers (Piper Nigrum L.). J. Microb. Biochem. Technol. 09(03), https://doi.org/10.4172/1948-5948.1000350
  27. Gautam A., Sharma S., Bhadauria R., 2010. Detection of toxigenic fungi and mycotoxins in medicinally important powdered herbal drugs. Internet. J. Microbiol. 7, 2.
  28. Grabarkiewicz-Saczesna J., Golinski P., Chełkowski J., Szebiotko K., 1985. Mycotoxins in cereal grain. Part XI. Simple multidetection procedure for determination of 11 mycotoxins in cereals. Nahrung 29, 229–240.
  29. Han Z., Ren Y., Zhu J., Cai Z., Chen Y., Luan L., Wu Y., 2012. Multianalysis of 35 Mycotoxins in Traditional Chinese Medicines by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Coupled with Accelerated Solvent Extraction. J. Agric. Food Chem. 60(33), 8233–8247. https://doi.org/10.1021/jf301928r
  30. Hartmann N., Erbs M., Wettstein F.E., Schwarzenbach R.P., Bucheli T.D., 2007. Quantification of estrogenic mycotoxins at the ng/L level in aqueous environmental samples using deuterated internal standards. J. Chromatogr. A 1138(1–2), 132–140. https://doi.org/10.1016/j.chroma.2006.10.045
  31. Häubl G., Berthiller F., Hametner C., Rechthaler J., Jaunecker G., Freudenschuss M., Krska R., Schuhmacher R., 2007. Characterization of (13C24) T-2 toxin and its use as an internal standard for the quantification of T-2 toxin in cereals with HPLC–MS/MS. Anal. Bioanal. Chem. 389(3), 931–940. https://doi.org/10.1007/s00216-007-1493-7
  32. Hodnik V., Anderluh G., 2009. Toxin Detection by Surface Plasmon Resonance. Sensors 9(3). 1339–1354. https://doi.org/10.3390/s9031339
  33. Honma Y., Naito S., Earnshaw A., Nagashima H., Goto T., 2004. Progress in the accuracy of mycotoxin analysis in the last quarter century. Mycotoxins 54(1), 33–38. https://doi.org/10.2520/myco.54.33
  34. Ip S.-P., Che C.-T., 2006. Determination of aflatoxins in Chinese medicinal herbs by high-performance liquid chromatography using immunoaffinity column cleanup. J. Chromatogr. A 1135(2), 241–244. https://doi.org/10.1016/j.chroma.2006.10.025
  35. Jarzynka S., Dąbkowska M., Netsvyetayeva I., Swoboda-Kopeć E., 2010. Mikotoksyny – niebezpieczne metabolity grzybów pleśniowych. Med. Rodz. 4, 113–119.
  36. Jiao Y., Blaas W., Rühl C., Weber R., 1992. Identification of ochratoxin A in food samples by chemical derivatization and gas chromatography-mass spectrometry. J. Chromatogr. A 595(1–2), 364–367. https://doi.org/10.1016/0021-9673(92)85183-T
  37. Katerere D., Stockenström S., Thembo K., Rheeder J., Shephard G., Vismer H., 2008. A preliminary survey of mycological and fumonisin and aflatoxin contamination of African traditional herbal medicines sold in South Africa. Hum. Exp. Toxicol. 27(11), 793–798. https://doi.org/10.1177/0960327108099535
  38. Klötzel M., Schmidt S., Lauber U., Thielert G., Humpf H.-U., 2005. Comparison of Different Clean-Up Procedures for the Analysis of Deoxynivalenol in Cereal-Based Food and Validation of a Reliable HPLC Method. Chromatographia 62(1–2), 41–48. https://doi.org/10.1365/s10337-005-0576-x
  39. Kolosova A.Y., Sibanda L., Dumoulin F., Lewis J., Duveiller E., Van Peteghem C., De Saeger S., 2008. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal. Chim. Acta 616(2), 235–244. https://doi.org/10.1016/j.aca.2008.04.029
  40. Kong W.-J., Liu S.-Y., Qiu F., Xiao X.-H., Yang M.-H., 2013. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid–liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection. Analyst 138(9), 2729. https://doi.org/10.1039/c3an00059a
  41. Kostakis C., Harpas P., Stockham P., 2013. Liquid chromatography-mass spectrometry in forensic toxicology. W: S. Fanali, P.R. Haddad, C. Poole, P. Schoenmakers, D.K. Lloyd (red.), Liquid Chromatography: Fundamentals and Instrumentation. Elsevier, Waltham, 256–257.
  42. Krska R., Baumgartner S., Josephs R., 2001. The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J. Anal. Chem. 371(3), 285–299. https://doi.org/10.1007/s002160100992
  43. Krska R., Welzig E., Berthiller F., Molinelli A., Mizaikoff B., 2005. Advances in the analysis of mycotoxins and its quality assurance. Food Addit. Contam. 22(4), 345–353. https://doi.org/10.1080/02652030500070192
  44. Langseth W., Rundberget T., 1998. Instrumental methods for determination of nonmacrocyclic trichothecenes in cereals, foodstuffs and cultures. J. Chromatogr. A 815(1), 103–121. https://doi.org/10.1016/S0021-9673(98)00388-4
  45. Lattanzio V.M.T., Pascale M., Visconti A., 2009. Current analytical methods for trichothecene mycotoxins in cereals. Trends Anal. Chem. 28(6), 758–768. https://doi.org/10.1016/j.trac.2009.04.012
  46. Ledzion E., Rybińska K., Postupolski J., Kurpińska-Jaworska J., Szczesna M., 2011. Badania i ocena bezpieczeństwa surowców zielarskich w zakresie zanieczyszczenia aflatoksynami. Rocz. Państw. Zakł. Hig. 62(4), 377–381.
  47. Lee D., Lyu J., Lee K.-G., 2015. Analysis of aflatoxins in herbal medicine and health functional foods. Food Control 48, 33–36. https://doi.org/10.1016/j.foodcont.2014.02.007
  48. Li W., Xu K., Xiao R., Yin G., Liu W., 2015. Development of an HPLC-Based Method for the Detection of Aflatoxins in Pu-erh Tea. Int. J. Food Prop. 18(4), 842–848. https://doi.org/10.1080/10942912.2014.885043
  49. Li Y., Zhou Y.-C., Yang M.-H., Ou-Yang Z., 2012. Natural occurrence of citrinin in widely consumed traditional Chinese food red yeast rice, medicinal plants and their related products. Food Chem. 132(2), 1040–1045. https://doi.org/10.1016/j.foodchem.2011.11.051
  50. Liu Z.-Y., Yu C.-H., Wan L., Sun Z.-L., 2012. Fragmentation study of five trichothecenes using electrospray hybrid ion trap/time-of-flight mass spectrometry with accurate mass measurements. Int. J. Mass Spectrom. 309, 133–140. https://doi.org/10.1016/j.ijms.2011.09.007
  51. Majerus P., Hain J., Scheer M., 2008. T-2 and HT-2 toxin analysis in cereals and cereal products following IAC cleanup and determination via GC-ECD after derivatization. Mycotoxin Res. 24(1), 24–30. https://doi.org/10.1007/BF02985267
  52. Maragos C., 2009. Fluorescence Polarization Immunoassay of Mycotoxins: A Review. Toxins (Basel) 1(2), 196–207. https://doi.org/10.3390/toxins1020196
  53. Maragos C.M., 2001. Measurement of Aflatoxins Using Capillary Electrophoresis. W: N.J. Clifton (red.), Methods in Molecular Biology. Humana Press, New Jersey, 51–58. https://doi.org/10.1385/1-59259-064-0:51
  54. Martins M.L., Martins H.M., Bernardo F., 2001. Aflatoxins in spices marketed in Portugal. Food Addit. Contam. 18(4), 315–319. https://doi.org/10.1080/02652030120041
  55. Matuszewski B.K., Constanzer M.L., Chavez-Eng C.M., 2003. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 75(13), 3019–3030. https://doi.org/10.1021/ac020361s
  56. Meneely J.P., Ricci F., Egmond H.P., Elliott C.T. van, 2011. Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends Anal. Chem. 30(2), 192–203. https://doi.org/10.1016/j.trac.2010.06.012
  57. Mitchell J., 2010. Small Molecule Immunosensing Using Surface Plasmon Resonance. Sensors 10(8), 7323–7346. https://doi.org/10.3390/s100807323
  58. Monaci L., De Angelis E., Visconti A., 2011. Determination of deoxynivalenol, T-2 and HT-2 toxins in a bread model food by liquid chromatography–high resolution-Orbitrap-mass spectrometry equipped with a high-energy collision dissociation cell. J. Chromatogr. A 1218(48), 8646–8654. https://doi.org/10.1016/j.chroma.2011.10.008
  59. Mornar A., Sertić M., Nigović B., 2013. Development of a Rapid LC/DAD/FLD/MSn Method for the Simultaneous Determination of Monacolins and Citrinin in Red Fermented Rice Products. J. Agric. Food Chem. 61(5), 1072–1080. https://doi.org/10.1021/jf304881g
  60. Nielsen K.F., Thrane U., 2001. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography–tandem mass spectrometry. J. Chromatogr. A 929(1–2), 75–87. https://doi.org/10.1016/S0021-9673(01)01174-8
  61. Olsson J., Börjesson T., Lundstedt T., Schnürer J., 2002. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol. 72(3), 203–214. https://doi.org/10.1016/S0168-1605(01)00685-7
  62. Rajeshwari P., Raveesha K.A., 2016. Mycological analysis and aflatoxin B1 contaminant estimation of herbal drug raw materials. Afr. J. Tradit. Complement. Altern. Med. 13(5), 123–131. https://doi.org/10.21010/ajtcam.v13i5.16
  63. Ran C., Chen D., Ma H., Jiang Y., 2017. Graphene oxide adsorbent based dispersive solid phase extraction coupled with multi-pretreatment clean-up for analysis of trace aflatoxins in traditional proprietary Chinese medicines. J. Chromatogr. B 1044–1045, 120–126. https://doi.org/10.1016/j.jchromb.2017.01.001
  64. Razzazi-Fazeli E., Rabus B., Cecon B., Böhm J., 2002. Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 968(1–2), 129–142. https://doi.org/10.1016/S0021-9673(02)00957-3
  65. Rizzo I., Vedoya G., Maurutto S., Haidukowski M., Varsavsky E., 2004. Assessment of toxigenic fungi on Argentinean medicinal herbs. Microbiol. Res. 159(2), 113–120. https://doi.org/10.1016/j.micres.2004.01.013
  66. Rychlik M., Asam S., 2008. Stable isotope dilution assays in mycotoxin analysis. Anal. Bioanal. Chem. 390(2), 617–628. https://doi.org/10.1007/s00216-007-1717-x
  67. Sargeant K., O’Kelly J., Carnaghan R.B.A., Allcroft R., 1961. The assay of a toxic principle in certain groundnut meals. Vet. Rec. 73, 1219–1222.
  68. Şenyuva H.Z., Gilbert J., Öztürkoğlu Ş., 2008. Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS. Anal. Chim. Acta 617(1–2), 97–106. https://doi.org/10.1016/j.aca.2008.01.019
  69. Singh P., Srivastava B., Kumar A., Dubey N.K., 2008. Fungal Contamination of Raw Materials of Some Herbal Drugs and Recommendation of Cinnamomum camphora Oil as Herbal Fungitoxicant. Microb. Ecol. 56(3), 555–560. https://doi.org/10.1007/s00248-008-9375-x
  70. Stubblefield R.D., Shotwell O.L., Hesseltine C.W., Smith M.L., Hall H.H., 1967. Production of aflatoxin on wheat and oats: Measurement with a recording densitometer. Appl. Microbiol. 15, 186–90.
  71. Suchorzyńska M., Misiewicz A., 2009. Mikotoksynotwórcze grzyby fitopatogeniczne z rodzaju Fusarium i ich wykrywanie technikami PCR. Post. Mikrobiol. 48(3), 221–230.
  72. Sulyok M., Berthiller F., Krska R., Schuhmacher R., 2006. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 20(18), 2649–2659. https://doi.org/10.1002/rcm.2640
  73. Suman M., Bergamini E., Catellani D., Manzitti A., 2013. Development and validation of a liquid chromatography/linear ion trap mass spectrometry method for the quantitative determination of deoxynivalenol-3-glucoside in processed cereal-derived products. Food Chem. 136(3–4), 1568–1576. https://doi.org/10.1016/j.foodchem.2012.06.085
  74. Sun X.L., Zhao X.L., Tang J., Zhou J., Chu F.S., 2005. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. Int. J. Food Microbiol. 99, 185–194.
  75. Tanaka H., Takino M., Sugita-Konishi Y., Tanaka T., 2006. Development of a liquid chromatography/time-of-flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Commun. Mass Spectrom. 20(9), 1422–1428. https://doi.org/10.1002/rcm.2460
  76. Trucksess M.W., Weaver C.M., Oles C.J., Rump L.V., White K.D., Betz J.M., Rader J.I., 2007. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. J. AOAC Int. 90, 1042–1049.
  77. Turner N.W., Subrahmanyam S., Piletsky S.A., 2009. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 632(2), 168–180. https://doi.org/10.1016/j.aca.2008.11.010
  78. United States Pharmacopeial Convention. 2014. USP 38-NF 33 Chapter 561: Articles of Botanical Origin.
  79. Wen J., Kong W., Hu Y., Wang J., Yang M., 2014. Multi-mycotoxins analysis in ginger and related products by UHPLC-FLR detection and LC-MS/MS confirmation. Food Control. 43, 82–87. https://doi.org/10.1016/j.foodcont.2014.02.038
  80. Wen J., Kong W., Wang J., Yang M., 2013. Simultaneous determination of four aflatoxins and ochratoxin A in ginger and related products by HPLC with fluorescence detection after immunoaffinity column clean-up and postcolumn photochemical derivatization. J. Sep. Sci. 36(23), 3709–3716. https://doi.org/10.1002/jssc.201300885
  81. Whitaker T.B., Trucksess M.W., Weaver C.M., Slate A., 2009. Sampling and analytical variability associated with the determination of aflatoxins and ochratoxin A in bulk lots of powdered ginger marketed in 1-lb bags. Anal. Bioanal. Chem. 395(5), 1291–1299. https://doi.org/10.1007/s00216-009-2880-z
  82. Wilkes J.G., Sutherland J.B, 1998. Sample preparation and high-resolution separation of mycotoxins possessing carboxyl groups. J. Chromatogr. B Biomed. Sci. Appl. 717(1–2), 135–156. https://doi.org/10.1016/S0378-4347(97)00664-6
  83. Wu C.L., Kuo Y.H., Lee C.L., Hsu Y.W., Pan T.M., 2011a. Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J. AOAC Int. 62, 179–90.
  84. Wu J., Zhao R., Chen B., Yang M., 2011b. Determination of zearalenone in barley by high-performance liquid chromatography coupled with evaporative light scattering detection and natural occurrence of zearalenone in functional food. Food Chem. 126(3), 1508–1511, https://doi.org/10.1016/j.foodchem.2010.11.159
  85. Yang M.-H., Chen J.-M., Zhang X.-H., 2005. Immunoaffinity Column Clean-Up and Liquid Chromatography with Post-Column Derivatization for Analysis of Aflatoxins in Traditional Chinese Medicine. Chromatographia 62(9–10), 499–504. https://doi.org/10.1365/s10337-005-0647-z
  86. Yang X., Hu Y., Kong W., Chu X., Yang M., Zhao M., Ouyang Z., 2014. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. J. Sep. Sci. 37(21), 3052–3059. https://doi.org/10.1002/jssc.201400635
  87. Yue Y.-T., Zhang X.-F., Pan J., Ou-Yang Z., Wu J., Yang M.-H., 2010a. Determination of Deoxynivalenol in Medicinal Herbs and Related Products by GC–ECD and Confirmation by GC-MS. Chromatographia 71(5–6), 533–538. https://doi.org/10.1365/s10337-010-1477-1
  88. Yue Y.-T., Zhang X.-F., Yang M.-H., Ou-Yang Z., Liu H.-B., 2010b. Simultaneous Determination of Deoxynivalenol and Nivalenol in Traditional Chinese Medicine by SPE and LC. Chromatographia 72(5–6), 551–555. https://doi.org/10.1365/s10337-010-1679-6
  89. Zhang L., Dou X.W., Zhang C., Logrieco A.F., Yang M.H., 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins (Basel) 10(2). https://doi.org/10.3390/toxins10020065
  90. Zhang X., Liu H., Chen J., 2005. Immunoaffinity Column Cleanup with Liquid Chromatography Using Post-Column Bromination for Aflatoxins in Medicinal Herbs and Plant Extracts. J. Chromatogr. Sci. 43(1), 47–51. https://doi.org/10.1093/chromsci/43.1.47
  91. Zhang X., Liu W., Logrieco A.F., Yang M., Ou-yang Z., Wang X., Guo Q., 2011. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC–FLD. Food Addit. Contam. Part A 28(7), 885–893. https://doi.org/10.1080/19440049.2011.563429
  92. Zhao X.S., Kong W.J., Wang S., Wei J.H., Yang M.H., 2017. Simultaneous analysis of multiple mycotoxins in Alpinia oxyphylla by UPLC-MS/MS. World Mycotoxin J. 10(1), 41–51. https://doi.org/10.3920/WMJ2016.2069

Downloads

Download data is not yet available.