Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 71 Nr 4 (2016)

Artykuły

Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu

DOI: https://doi.org/10.24326/as.2016.4.5
Przesłane: 7 maja 2019
Opublikowane: 19-12-2016

Abstrakt

Celem niniejszej pracy było określenie wpływu siarczanu ołowiu na kiełkowanie nasion bobu (Vicia faba L.) z łupiną nasienną i bez łupiny nasiennej oraz na wzrost roślin z nich wyrosłych. Nasiona traktowano wodnymi roztworami siarczanu ołowiu o stężeniach 0,1 i 1% PbSO4. Stwierdzono, że sole ołowiu zmniejszały energię i siłę kiełkowania nasion bobu, hamowały wzrost korzeni zarówno w obecności łupiny nasiennej, jak i przy jej braku. Wzrost pędów był istotnie zahamowany u roślin wyrosłych z nasion bez łupiny nasiennej w obu stężeniach PbSO4. Pędy roślin wyrosłe z nasion z łupiną nasienną były jedynie krótsze przy stężeniu 1%. Większe stężenie PbSO4 skutkowało mniejszym przyrostem świeżej i suchej masy organów bobu. Największe różnice w procentowej zawartości wody wykazano w liściach roślin bobu. Wyniki badań wskazują, że większą tolerancję na ołów mają rośliny wyrosłe z nasion posiadających łupinę nasienną.

Bibliografia

Abramczyk S., 1998. Uwaga, ołów. Aura 3, 32–33.

Ashraf U., Kanu A.S., Mo Z., Hussain S., Anjum S.A., Khan I., Abbas R.N., Tang X., 2015. Lead toxicity in rice: effects, mechanisms, and mitigation strategies-a mini review. Environ Sci. Pollut. Res. 22 (23), 18318–18332.

Barceló J., Poschenrieder Ch., 1990. Plant water relations as affected by heavy metal stress: a review. J. Plant Nutr. 13, 1–37.

Bewley J.D., 1997. Seed germination and dormancy. Plant Cell. 9, 1055–1066.

Burzyński M., 1987. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol. Plant. 9, 229–238.

Chaney R., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S., Baker A.J.M., 1998. Phytoremediation of soil metals. Curr. Optin. Biotechnol. 8, 279–284.

Chwil M., Mikuła A., 2005. Reaction of Phaseolus vulgaris (L.) var. nanus organs to lead stress. Chem. Inż. Ekol. 12 (4), 352–360.

Ciećko Z., Wyszkowski M., Żołnowski A., 2000. Działanie zanieczyszczenia gleby ołowiem i nawożenia wapniem na plonowanie i skład chemiczny kukurydzy. Zesz. Probl. Post. Nauk Rol. 472, 129–136.

Ferhad M.E., Tarik E., Muttalip G., Boysan C.S., 2016. Influence of lead stress on growth, antioxidative enzyme activities and ion change in root and leaf of strawberry. Fresen. Environ. Bull. 25 (2), 623–632.

Gallego S.M., Benavides M.P., Tomaro M.L., 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121, 151–159.

Gorlach E., Gambuś F., 2000. Potencjalnie toksyczne pierwiastki śladowe w glebach (nadmiar, szkodliwość i przeciwdziałanie). Zesz. Probl. Post. Nauk Rol. 472, 275–296.

Grimm N.B., Foster D., Groffman P., Grove J.M., Hopkinson C.S., Nadelhoffer K.J., Pataki D.E., Peters D.P., 2008. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol. Environ. 6, 264–272.

Grover P., Rekhadevi P., Danadevi K., Vuyyuri S., Rahman M.M., 2010. Genotoxicity evaluation in workers occupationally exposed to lead. Int. J. Hyg. Environ. Health. 213 (2), 99–106.

Grzesiuk S., Kulka K., 1981. Fizjologia i biochemia nasion. PWN, Warszawa.

Gwóźdź A., Przymusiński R., Rucińska R., Deckert J., 1997. Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol. Plant. 19, 459–465.

Huang S.S., Liao Q.L., Hua M., Wu X.M., Bi K.S., Yan C.Y., Chen B., Zhang X.Y., 2007. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67 (11), 2148–2155.

Inal A., Gunes A., Zhang F., Cakmak I., 2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol. Biochem. 45, 350–356.

Jin C.W., Zheng S.J., He Y.F., Zhou G.D., Zhou Z.X., 2005. Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere 59 (8), 1151–1159.

Kabata-Pendias A., Mukherjee A.B., 2007. Trace elements from soil to human, Springer-Verlag, Berlin–Heidelberg.

Klavins M., Potapovics O., Rodinov V., 2009. Heavy Metals in Fish from Lakes in Latvia: Concentrations and Trends of Changes. Bull. Environ. Contam. Toxicol. 82 (1), 96–100.

Kopittke P.M., Asher C.J., Kopittke R.A., Menzies N.W., 2007. Toxic effects of Pb2+on growth of cowpea (Vigna unguiculata). Environ. Pollut. 150 (2), 280–287.

Krzesłowska M., Lenartowska M., Mellerowicz E.J., Samardakiewicz S., Woźny A., 2009. Pectinous cell wall thickenings formation – A response of moss protonemata cells to lead. Environ. Exp. Bot. 65, 119–131.

Krzesłowska M., Woźny A., 2000. Wall thickenings – moss protonema apical cell reaction to lead. Biol. Plant. 43, 93–98.

Li J.X., Yang X.E., He Z.L., Jilani G., Sun C.Y., Chen S.M., 2007. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma 141, 174–180.

Luo X.-S., Yu S., Li X.-D., 2012. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Appl. Geochem. 27 (5), 995–1004.

Malar S., Vikram S.S., Favas P.J.C., Perumal V., 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud. 55:54.

Malkowski E., Kita A., Galas W., Karcz W., Kuperberg J.M., 2002. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. J. Plant Growth Regul. 37, 69–76.

Mesmar M.N., Jaber K., 1991. The toxic effect of lead on seed germination, growth, chlorophyll and protein contents of wheat and lens. Acta Biol. Hung. 42 (4), 331–344.

Ociepa-Kubicka A., Ociepa E., 2012. Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inż. Ochr. Środ. 15 (2), 169–180.

Pawlak-Sprada S., Arasimowicz-Jelonek M., Podgórska M., Deckert J., 2011. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim. Pol. 58, 211–216.

Pesko M., Molnárová M., Fargašová A., 2015. Effect of lead and zinc treatments on Brassica napus L. (cv. Verona) plants: Accumulation and physio-biochemical changes. Fresenius Environ. Bull. 24 (10), 3213–3219.

Prasad M.N.V., 1995. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot. 35, 525–545.

Przedpelska-Wasowicz E.M., Wierzbicka M., 2011. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 248, 663–671.

Qureshi M.I., Abdin M.Z., Qadir S., Iqbal M., 2007. Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol. Plant. 51, 121–128.

Rucińska R., Waplak S., Gwóźdź E.A., 1999. Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Bioch. 37, 187–194.

Rucińska R., Sobkowiak R., Gwóźdź E.A., 2004. Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell. Mol. Biol. Lett. 9, 519–528.

Rucińska R., Gwóźdź E.A., 2005. Influence of lead on membrane permeability and lipoxygenase activity in lupine roots. Biol. Plant. 49, 617–619.

Rucińska-Sobkowiak R., Pukacki P.M., 2006. Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol. Plant. 28, 357–364.

Samardakiewicz S., Strawiński P., Woźny A., 1996. The influence of lead on callose formation in roots of Lemna minor L. Biol. Plant. 38, 463–467.

Seregin I.V., Ivanov V.B., 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48, 523–544.

Seregin I.V., Kosevnikova A.D., 2008. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ. J. Plant Physiol. 55, 1–22.

Shahid M., Pinelli E., Pourrut B., Silvestre J., Dumat C., 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol. Environ. Saf. 74 (1), 78–84.

Sharma P., Dubey R.S., 2005. Lead toxicity in plants. Braz. J. Plant Physiol. 17, 35–52.

Słowik D., 1999. Wpływ ołowiu na fotosyntezę. Wiad. Bot. 43, 41–49.

Volobueva O.V., Velikanov G.A., Baluška F., 2004. Regulation of intercellular water exchange in various zones of maize root under stresses. Russ. J. Plant Physiol. 51, 676–683.

Watanabe M.A., 1997. Phytoremediation on the brink of commercialization. Environ. Sci. Technol. 31, 182–186.

Wierzbicka M., 2011. Lead translocation and localization in Allium cepa roots. Can. J. Bot. 65 (9), 1851–1860.

Wierzbicka M., Obidzińska J., 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137, 155–171.

Wójcik A., Tukendorf A., 2000. Strategia unikania stresu w odporności roślin na metale ciężkie. Wiad. Bot. 39 (3–4), 33–40.

Zhao S., Feng Ch., Quan W., Chen X., Niu J., Shen Z., 2012. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar. Pollut. Bull. 64, 1163–1171.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.