Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 3 (2023)

Artykuły

Genetic basis of the phenomenon of male sterility and fertility restoration in maize (Zea mays L.) – a review

DOI: https://doi.org/10.24326/as.2023.5120
Przesłane: 17 marca 2023
Opublikowane: 22-01-2024

Abstrakt

The phenomenon of male sterility in higher plants is, apart from protandry (earlier maturation of stamens), protogyny (earlier maturation of pistils), heterostyly (different stigmas) and self-incompatibility, one of the evolutionarily conditioned mechanisms forcing external pollination. Due to the elimination of the time- and cost-consuming emasculation of maternal lines, male-sterile lines are an object of interest in the seed production of hybrid cultivars of many plant species, including maize. Seed production of hybrid cultivars using male-sterile lines requires the establishment of maternal lines that are male-sterile in different environments and suitable paternal lines with fertility restorer genes. This paper summarizes the findings on the genetics of male sterility and fertility restoration in maize.

Bibliografia

  1. Allen J.O., Fauron C.M., Minx P., Roark L., Oddiraju S., Lin G.N., Meyer L., Sun H., Kim K., Wang C., Du F., Xu D., Gibson M., Cifrese J., Clifton S.W., Neton K.J., 2007. Comparison among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177(2), 1173–1193. https://doi.org/10.1534/genetics.107.073312 DOI: https://doi.org/10.1534/genetics.107.073312
  2. Bohra A., Jhra U.C., Adhimoolam P., Bisht D., Singh N.P., 2016. Cytoplasmic male sterility (CMS) in hybrid breeding of field crops. Plant Cell Rep. 35, 967–993. https://doi.org/10.1007/s00299-016-1949-3 DOI: https://doi.org/10.1007/s00299-016-1949-3
  3. Bosacchi M., Gurdon C., Maliga P., 2015. Plastid genotyping reveals uniformity of cms-T maize cytoplasms. Plant Physiol. 169(3), 2129–2137. https://doi.org/10.1104/pp.15.01147 DOI: https://doi.org/10.1104/pp.15.01147
  4. Bozinović S., Vancetović J., Babić M., Filipović M., Delić N., 2010. The plus-hybrid effect on the grain yield of two ZP maize hybrids. Genetika 42(3), 475–484. DOI: https://doi.org/10.2298/GENSR1003475B
  5. Budar F., Pelletier G., 2001. Male sterility in plants: occurrence, determinism, significance and use. C.R. Acad. Sci. Paris, Sciences de la vie 324(6), 543–550. https://doi.org/10.1016/S0764-4469(01)01324-5 DOI: https://doi.org/10.1016/S0764-4469(01)01324-5
  6. Burns H.A., 2017. Southern corn leaf blight: A story worth retelling. Agron. J. 109(4), 1–7. DOI: https://doi.org/10.2134/agronj2017.01.0006
  7. Czepak M.P., Kliemann M., Schmildt O., Araujo R.N., de Sousa Oliveira V., Junior L.M.B., Zanala A.G.B., Santos K.T.H., dos Santos J.S.H., Santos G.P., Schmildt E.R., 2019. Effect of artificial detasseling and defoliation on maize seed production. Int. J. Plant Soil Sci. 28(4), 1–9. https://doi.org/10.9734/ijpss/2019/v28i430114 DOI: https://doi.org/10.9734/ijpss/2019/v28i430114
  8. Dewey R.E., Timothy D.H., Levings III C.S., 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Natl. Acad. Sci. USA, 48, 5374–5378. DOI: https://doi.org/10.1073/pnas.84.15.5374
  9. Dewey R.E., Timothy D.H., Levings III C.S., 1991. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr. Genet. 20(6), 475–482. DOI: https://doi.org/10.1007/BF00334775
  10. Duvick D.N., 1959. The use of cytoplasmic male sterility in hybrid seed production. Econ. Bot. 13(3), 167–195. DOI: https://doi.org/10.1007/BF02860581
  11. Gabay-Laughnan S., Chase C.D., Ortega V.M., Zhao L. 2004. Molecular-genetic characterization of cms-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics 166, 959–970. DOI: https://doi.org/10.1093/genetics/166.2.959
  12. Gaborieau L., Brown G.G., Mireau H., 2016. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front. Plant Sci. 7, 1816. https://doi.org/10.3389/fpls.2016.01816 DOI: https://doi.org/10.3389/fpls.2016.01816
  13. Góral H., Pojmaj M.S., Pojmaj R., Burczy M., 2009. Otrzymywanie nasion mieszańcowych pszenżyta ozimego w siewie pasowym linii cms i restorera oraz w mieszaninach tych form [Production of hybrid seeds of winter triticale from cms and restoring lines in strip and bulk sowing]. Biul. Inst. Hod. Aklim. Rośl. 252, 163–168. DOI: https://doi.org/10.37317/biul-2009-0064
  14. Hanson M.R., Bentolia S., 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl), 154–160. https://doi.org/10.1105/tpc.015966 DOI: https://doi.org/10.1105/tpc.015966
  15. Harvey M.J., 2004. The use of cytoplasmic male sterility for hybrid seed production. In: H. Daniell, C.D. Chase (eds), Molecular biology and biotechnology of plant organelles. Springer, 623–634. DOI: https://doi.org/10.1007/978-1-4020-3166-3_23
  16. Hawliczek-Strulak A., Bartoszewski G., Korzeniewska A., Niemirowicz-Szczytt K., 2011. Cecha męskiej sterylności u rzodkiewki (Raphanus sativus L.) – podłoże genetyczne i molekularne [Male sterility in radish (Raphanus sativus L.) – genetic and molecular background]. Post. Nauk Rol. 4, 155–167.
  17. Hu Y.M., Tang J.H., Yang H., Xie H.L., Lu X.M., Niu J.H., Chen W.C., 2006. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor. Appl. Genet. 113, 357–360. DOI: https://doi.org/10.1007/s00122-006-0302-6
  18. Huang L., Xiang J., Liu J., Rong T., Wang J., Lu Y., Tang Q., Wen W., Cao M., 2012. Expression characterization of genes for CMS-C in maize. Protoplasma 249, 1119–1127. https://doi.org/10.1007/s00709-011-0358-2 DOI: https://doi.org/10.1007/s00709-011-0358-2
  19. Hunter R.B., Mortimore C.G., Kannenberg L.W., 1972. Inbred maize performance following tassel and leaf removal. Agron. J. 65(3), 471–472. DOI: https://doi.org/10.2134/agronj1973.00021962006500030035x
  20. Jaqueth J.S., Hou Z., Zheng P., Ren R., Nagel B. A., Cutter G., Niu X., Vollbrecht E., Greene T.W., Kumpatha S.P., 2020. Fertility restoration of maize cms-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 101, 101–111. https://doi.org/10.1111/tpj.14521 DOI: https://doi.org/10.1111/tpj.14521
  21. Jovanović S.V., Todorović G.N., Kresović B.J., Secanski M.D., Strabanović R.T., Stanisavljević R.S., Postić D.Z., 2018. Effects of cytoplasmic male sterility on maize hybrids yield. Agric. Food 6, 65–72.
  22. Jimenez-Lopez J.C., Gachomo E.W., Seufferheld M.J., Kotchoni S.O., 2010. The maize ALDH protein superfamily: linking structural features to functional specifities. BMC Struct. Biol. 10. https://doi.org/10.1186/1472-6807-10-43 DOI: https://doi.org/10.1186/1472-6807-10-43
  23. Kaul M.L.H., 1988. Male sterility in higher plants. Monogr. Theor. Appl. Genet. 10. DOI: https://doi.org/10.1007/978-3-642-83139-3
  24. Kempken F., Pring D., 1999. Plant breeding: male sterility in higher plants – fundamentals and applications. In: K. Esser, J.W. Kadereit, U. Lüttge, M. Runge (eds), Genetics, cell biology and physiology, systematics and comparative morphology, ecology and vegetation science. Progress in Botany 60, Springer-Verlag, Berlin Heidelberg, 139–166. DOI: https://doi.org/10.1007/978-3-642-59940-8_6
  25. Kheyr-Pour A., Gracen V.E., Everett H.L., 1981. Genetics of fertility restoration in the c-group of cytoplasmic male sterility in maize. Genetics 98, 379–388. DOI: https://doi.org/10.1093/genetics/98.2.379
  26. Kohls S., Stamp P., Messmer R., 2010. Fine-mapping of RF4 a major restorer-of-fertility gene for c-type cytoplasmic male sterility in maize. Bulletin SGPW/SSA 23, 18.
  27. Kohls S., Stamp P., Knaak C., Messmer R., 2011. QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor. Appl. Genet. 123, 327–338. DOI: https://doi.org/10.1007/s00122-011-1586-8
  28. Kolasińska I., 2014. Identyfikacja donorów genów przywracających męską płodność u mieszańców żyta ze sterylizującą cytoplazmą Pampa [Identification of gene donors for male fertility restoration in rye hybrids with Pampa cytoplasm]. Biul. Inst. Hod. Aklim. Rośl. 271, 17–28. DOI: https://doi.org/10.37317/biul-2014-0038
  29. Kotchoni S.O., Jimenez-Lopez J.C., Gachomo E.W., Seufferheld M.J., 2010. A new and unified nomenclature for male fertility restorer (RF) proteins in higher plants. PLoS ONE 5(12), e15906. https://doi.org/10.1371/journal.pone.0015906 DOI: https://doi.org/10.1371/journal.pone.0015906
  30. Labudda M., Machczyńska J., Woś H., Bednarek P.T., 2011. Wybrane aspekty postępu biologicznego w hodowli pszenżyta (× Triticosecale Wittm. ex A. Camus) [Selected aspects of biological progress in the breeding of triticale (× Triticosecale Wittm. ex A. Camus). Post. Nauk Rol. 4, 3–10.
  31. Levings C.S. 3rd, 1993. Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5, 1285–1290. DOI: https://doi.org/10.1105/tpc.5.10.1285
  32. Liu F., Cui X., Horner H.T., Weiner H., Schnable P.S., 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13, 1063–1078. https://doi.org/10.1105/tpc.13.5.1063 DOI: https://doi.org/10.1105/tpc.13.5.1063
  33. Luo H., Huang H., Long M., Zhou W., Liu X., Yang Y., 2001. Short communication: Responses of cytoplasmic male sterile lines to various restoring resources. Maydica 47, 67–69.
  34. Mackenzie S., 2012. Male sterility and hybrid seed production. In: A. Altman, P.M. Hasegawa (eds), Plant biotechnology and agriculture. Academic Press, 185–194. https://doi.org/10.1016/B978-0-12-381466-1.00012-2 DOI: https://doi.org/10.1016/B978-0-12-381466-1.00012-2
  35. Meyer J.M., 2010. Genetic characterization of the partial restorer of fertility gene, Rf8, in T cytoplasm. Graduate Theses and Dissertations. Iowa State University.
  36. Miedaner T., Glass C., Dreyer F., Wildman P., Wortman H., Geiger H.H., 2000. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101, 1226–1233. https://doi.org/10.1007/s001220051601 DOI: https://doi.org/10.1007/s001220051601
  37. Mou B.-T., Zhao Z.-F., Yue L., Li Ch., Zhang J., Li Z.-B., Shen H., Cao M.-J., 2019. Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C. Acta Agron. Sinica 45(2), 225–234. https://doi.org/10.3724/SP.J.1006.2019.083033 DOI: https://doi.org/10.3724/SP.J.1006.2019.83033
  38. Musgrave M.E., Antonovics J., Siedow J.N., 1986. Is male-sterility in plants related do lack of cyanide-resistant respiration in tissues?. Plant Sci. 44, 7–11. DOI: https://doi.org/10.1016/0168-9452(86)90161-5
  39. Pelletier G., Budar F., 2007. The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr. Opin. Biotechnol. 18, 121–125. DOI: https://doi.org/10.1016/j.copbio.2006.12.002
  40. Piątkowski J., 2016. Mechanistyczne oraz ewolucyjne aspekty oddziaływnia drożdżowych białek PPR z transkryptami mitochondrialnymi na przykładzie białka Dmr1. Rozprawa doktorska [Mechanistic and evolutionary aspects of interactions between yeast PPR proteins and mitochondrial transcripts, based on investigation into Dmr1 protein. Doctoral thesis]. Uniwersytet Warszawski, https://depotuw.ceon.pl/bitstream/handle/item/1938/1400-DR-BI-96263.pdf?sequence=1
  41. Qin X., Warguchuk R., Arnal N., Gaborieau L., Mireau H., Brown G.G., 2014. In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biol. 14, 313. https://doi.org/10.1186/s12870-014-0313-4 DOI: https://doi.org/10.1186/s12870-014-0313-4
  42. Rhoads D.M., Levings C.S 3rd., Siedow N., 1995. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J. Bioenerg. Biomembr. 27(4), 437–445. DOI: https://doi.org/10.1007/BF02110006
  43. Schnable P.S., Wise R.P., 1994. Recovery of heritable, transposon-induced, mutant alleles of the rf2 nuclear restorer of T-cytoplasm maize. Genetics 136, 1171–1185. DOI: https://doi.org/10.1093/genetics/136.3.1171
  44. Schnable P.S., Wise R.P., 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 3(5):175-180 DOI: https://doi.org/10.1016/S1360-1385(98)01235-7
  45. Sisco P.H., 1991. Duplications complicate genetic mapping of RF4, a restorer gene for cms-C cytoplasmic male sterility in corn. Crop Sci. 31, 1263–1266. https://doi.org/10.2135/cropsci1991.0011183X003100050036x DOI: https://doi.org/10.2135/cropsci1991.0011183X003100050036x
  46. Sofi P.A., Rather A.G., Wani S.A., 2007. Genetic and molecular basis of cytoplasmic male sterility in maize. Commun. Biometry Crop Sci. 2(1), 49–60.
  47. Stamp P., Chowchong S., Menzi M., Weingartner U., Kaeser O., 2000. Increase in the yield of cytoplasmic male sterile maize revisited. Crop Sci. 40(6), 1586–1587. https://doi.org/10.2135/cropsci2000.4061586x DOI: https://doi.org/10.2135/cropsci2000.4061586x
  48. Stojałowski S., Łapiński M., 2001. Wpływ różnych źródeł cytoplazmy wywołującej męską jałowość na właściwości rolnicze mieszańców żyta (Secale cereale L.) [Effect of different sources of male sterility-inducing cytoplasm on the agronomic performance of winter rye (Secale cereale L.) hybrids]. Biul. Inst. Hod. Aklim. Rośl. 220, 179–189.
  49. Storchova H., 2017. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. Review. Int. J. Mol. Sci. 18(2429). https://doi.org/10.3390/ijms18112429 DOI: https://doi.org/10.3390/ijms18112429
  50. Su A., Song W., Shi Z., Zhao Y., Xing J., Zhang R., Li C., Luo M., Wang J., Zhao J., 2017. Exploring differentially expressed genes associated with fertility instability of S-type cytoplasmic male-sterility in maize by RNA-seq. J. Integr. Agric. 16(8), 1689–1699. DOI: https://doi.org/10.1016/S2095-3119(16)61494-6
  51. Tang J.H., Liu Z.H., Chen W.C., Hu Y.M., Ji Q.H., Ji L.Y., 2001. The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize. Sci. Agric. Sinica 34, 592–596.
  52. Touzet P., Budar F., 2004. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility?. TRENDS in Plant Sci. 9(12), 568–570. httpps://doi.org/10.1016/j.tplants.2004.10.001 DOI: https://doi.org/10.1016/j.tplants.2004.10.001
  53. Weingartner U., Camp K.-H., Stamp P., 2004. Impact of male sterility and xenia on grain quality traits of maize. Europ. J. Agron. 21, 239–247. DOI: https://doi.org/10.1016/j.eja.2003.08.006
  54. Winiarczyk K., 1999. Męska i żeńska sterylność u roślin kwiatowych. Wiad. Bot. 43(1/2), 37–45.
  55. Wise R.P., Bronson C.R., Schnable P.S., Horner H.T., 1999. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Bot. Publ. Pap. 60. DOI: https://doi.org/10.1016/S0065-2113(08)60911-6
  56. Xiao S., Zang J., Pei Y., Liu J., Liu J., Song W., Shi Z., Su A., Zhao J., and Chen H. 2020. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol. Plant. 13, 1270–1283. https://doi.org/10.1016/j.molp.2020.07.002 DOI: https://doi.org/10.1016/j.molp.2020.07.002
  57. Yen D.E., 1959. Pollen sterility in pukekohe longkeeper onions. New Zealand J. Agric. Res. 2(3), 605–612. https://doi.org/10.1080/00288233.1959.10418038 DOI: https://doi.org/10.1080/00288233.1959.10418038
  58. Yongming L., Zhuofan Z., Yanli L., Chuan L., Jing W., Boxiao D., Bing L., Tao Q., Wenbing Z., Moju C., 2016. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). PeerJ 4, e2719. https://doi.org/10.7717/peerj.2719 DOI: https://doi.org/10.7717/peerj.2719
  59. Zabala G., Gabay-Laughnan S., Laughnan J.R., 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147, 847–860. DOI: https://doi.org/10.1093/genetics/147.2.847
  60. Zheng M., Yiang T., Liu X., Lu G., Zhang P., Jiang B., Zhou S., Lu Y., Lan H., Zhang S., Li C., Rong T., Cao M., 2020. qRf8-1, a novel QTL for the fertility restoration of maize cms-C identified by QTL-seq. G3 10, 2457–2464. https://doi.org/10.1534/g3.120.401192 DOI: https://doi.org/10.1534/g3.120.401192

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

<< < 1 2 3 4 5 6 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.