Abstrakt
The phenomenon of male sterility in higher plants is, apart from protandry (earlier maturation of stamens), protogyny (earlier maturation of pistils), heterostyly (different stigmas) and self-incompatibility, one of the evolutionarily conditioned mechanisms forcing external pollination. Due to the elimination of the time- and cost-consuming emasculation of maternal lines, male-sterile lines are an object of interest in the seed production of hybrid cultivars of many plant species, including maize. Seed production of hybrid cultivars using male-sterile lines requires the establishment of maternal lines that are male-sterile in different environments and suitable paternal lines with fertility restorer genes. This paper summarizes the findings on the genetics of male sterility and fertility restoration in maize.
Bibliografia
- Allen J.O., Fauron C.M., Minx P., Roark L., Oddiraju S., Lin G.N., Meyer L., Sun H., Kim K., Wang C., Du F., Xu D., Gibson M., Cifrese J., Clifton S.W., Neton K.J., 2007. Comparison among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177(2), 1173–1193. https://doi.org/10.1534/genetics.107.073312
DOI: https://doi.org/10.1534/genetics.107.073312
- Bohra A., Jhra U.C., Adhimoolam P., Bisht D., Singh N.P., 2016. Cytoplasmic male sterility (CMS) in hybrid breeding of field crops. Plant Cell Rep. 35, 967–993. https://doi.org/10.1007/s00299-016-1949-3
DOI: https://doi.org/10.1007/s00299-016-1949-3
- Bosacchi M., Gurdon C., Maliga P., 2015. Plastid genotyping reveals uniformity of cms-T maize cytoplasms. Plant Physiol. 169(3), 2129–2137. https://doi.org/10.1104/pp.15.01147
DOI: https://doi.org/10.1104/pp.15.01147
- Bozinović S., Vancetović J., Babić M., Filipović M., Delić N., 2010. The plus-hybrid effect on the grain yield of two ZP maize hybrids. Genetika 42(3), 475–484.
DOI: https://doi.org/10.2298/GENSR1003475B
- Budar F., Pelletier G., 2001. Male sterility in plants: occurrence, determinism, significance and use. C.R. Acad. Sci. Paris, Sciences de la vie 324(6), 543–550. https://doi.org/10.1016/S0764-4469(01)01324-5
DOI: https://doi.org/10.1016/S0764-4469(01)01324-5
- Burns H.A., 2017. Southern corn leaf blight: A story worth retelling. Agron. J. 109(4), 1–7.
DOI: https://doi.org/10.2134/agronj2017.01.0006
- Czepak M.P., Kliemann M., Schmildt O., Araujo R.N., de Sousa Oliveira V., Junior L.M.B., Zanala A.G.B., Santos K.T.H., dos Santos J.S.H., Santos G.P., Schmildt E.R., 2019. Effect of artificial detasseling and defoliation on maize seed production. Int. J. Plant Soil Sci. 28(4), 1–9. https://doi.org/10.9734/ijpss/2019/v28i430114
DOI: https://doi.org/10.9734/ijpss/2019/v28i430114
- Dewey R.E., Timothy D.H., Levings III C.S., 1987. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Natl. Acad. Sci. USA, 48, 5374–5378.
DOI: https://doi.org/10.1073/pnas.84.15.5374
- Dewey R.E., Timothy D.H., Levings III C.S., 1991. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr. Genet. 20(6), 475–482.
DOI: https://doi.org/10.1007/BF00334775
- Duvick D.N., 1959. The use of cytoplasmic male sterility in hybrid seed production. Econ. Bot. 13(3), 167–195.
DOI: https://doi.org/10.1007/BF02860581
- Gabay-Laughnan S., Chase C.D., Ortega V.M., Zhao L. 2004. Molecular-genetic characterization of cms-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics 166, 959–970.
DOI: https://doi.org/10.1093/genetics/166.2.959
- Gaborieau L., Brown G.G., Mireau H., 2016. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front. Plant Sci. 7, 1816. https://doi.org/10.3389/fpls.2016.01816
DOI: https://doi.org/10.3389/fpls.2016.01816
- Góral H., Pojmaj M.S., Pojmaj R., Burczy M., 2009. Otrzymywanie nasion mieszańcowych pszenżyta ozimego w siewie pasowym linii cms i restorera oraz w mieszaninach tych form [Production of hybrid seeds of winter triticale from cms and restoring lines in strip and bulk sowing]. Biul. Inst. Hod. Aklim. Rośl. 252, 163–168.
DOI: https://doi.org/10.37317/biul-2009-0064
- Hanson M.R., Bentolia S., 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl), 154–160. https://doi.org/10.1105/tpc.015966
DOI: https://doi.org/10.1105/tpc.015966
- Harvey M.J., 2004. The use of cytoplasmic male sterility for hybrid seed production. In: H. Daniell, C.D. Chase (eds), Molecular biology and biotechnology of plant organelles. Springer, 623–634.
DOI: https://doi.org/10.1007/978-1-4020-3166-3_23
- Hawliczek-Strulak A., Bartoszewski G., Korzeniewska A., Niemirowicz-Szczytt K., 2011. Cecha męskiej sterylności u rzodkiewki (Raphanus sativus L.) – podłoże genetyczne i molekularne [Male sterility in radish (Raphanus sativus L.) – genetic and molecular background]. Post. Nauk Rol. 4, 155–167.
- Hu Y.M., Tang J.H., Yang H., Xie H.L., Lu X.M., Niu J.H., Chen W.C., 2006. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor. Appl. Genet. 113, 357–360.
DOI: https://doi.org/10.1007/s00122-006-0302-6
- Huang L., Xiang J., Liu J., Rong T., Wang J., Lu Y., Tang Q., Wen W., Cao M., 2012. Expression characterization of genes for CMS-C in maize. Protoplasma 249, 1119–1127. https://doi.org/10.1007/s00709-011-0358-2
DOI: https://doi.org/10.1007/s00709-011-0358-2
- Hunter R.B., Mortimore C.G., Kannenberg L.W., 1972. Inbred maize performance following tassel and leaf removal. Agron. J. 65(3), 471–472.
DOI: https://doi.org/10.2134/agronj1973.00021962006500030035x
- Jaqueth J.S., Hou Z., Zheng P., Ren R., Nagel B. A., Cutter G., Niu X., Vollbrecht E., Greene T.W., Kumpatha S.P., 2020. Fertility restoration of maize cms-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 101, 101–111. https://doi.org/10.1111/tpj.14521
DOI: https://doi.org/10.1111/tpj.14521
- Jovanović S.V., Todorović G.N., Kresović B.J., Secanski M.D., Strabanović R.T., Stanisavljević R.S., Postić D.Z., 2018. Effects of cytoplasmic male sterility on maize hybrids yield. Agric. Food 6, 65–72.
- Jimenez-Lopez J.C., Gachomo E.W., Seufferheld M.J., Kotchoni S.O., 2010. The maize ALDH protein superfamily: linking structural features to functional specifities. BMC Struct. Biol. 10. https://doi.org/10.1186/1472-6807-10-43
DOI: https://doi.org/10.1186/1472-6807-10-43
- Kaul M.L.H., 1988. Male sterility in higher plants. Monogr. Theor. Appl. Genet. 10.
DOI: https://doi.org/10.1007/978-3-642-83139-3
- Kempken F., Pring D., 1999. Plant breeding: male sterility in higher plants – fundamentals and applications. In: K. Esser, J.W. Kadereit, U. Lüttge, M. Runge (eds), Genetics, cell biology and physiology, systematics and comparative morphology, ecology and vegetation science. Progress in Botany 60, Springer-Verlag, Berlin Heidelberg, 139–166.
DOI: https://doi.org/10.1007/978-3-642-59940-8_6
- Kheyr-Pour A., Gracen V.E., Everett H.L., 1981. Genetics of fertility restoration in the c-group of cytoplasmic male sterility in maize. Genetics 98, 379–388.
DOI: https://doi.org/10.1093/genetics/98.2.379
- Kohls S., Stamp P., Messmer R., 2010. Fine-mapping of RF4 a major restorer-of-fertility gene for c-type cytoplasmic male sterility in maize. Bulletin SGPW/SSA 23, 18.
- Kohls S., Stamp P., Knaak C., Messmer R., 2011. QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor. Appl. Genet. 123, 327–338.
DOI: https://doi.org/10.1007/s00122-011-1586-8
- Kolasińska I., 2014. Identyfikacja donorów genów przywracających męską płodność u mieszańców żyta ze sterylizującą cytoplazmą Pampa [Identification of gene donors for male fertility restoration in rye hybrids with Pampa cytoplasm]. Biul. Inst. Hod. Aklim. Rośl. 271, 17–28.
DOI: https://doi.org/10.37317/biul-2014-0038
- Kotchoni S.O., Jimenez-Lopez J.C., Gachomo E.W., Seufferheld M.J., 2010. A new and unified nomenclature for male fertility restorer (RF) proteins in higher plants. PLoS ONE 5(12), e15906. https://doi.org/10.1371/journal.pone.0015906
DOI: https://doi.org/10.1371/journal.pone.0015906
- Labudda M., Machczyńska J., Woś H., Bednarek P.T., 2011. Wybrane aspekty postępu biologicznego w hodowli pszenżyta (× Triticosecale Wittm. ex A. Camus) [Selected aspects of biological progress in the breeding of triticale (× Triticosecale Wittm. ex A. Camus). Post. Nauk Rol. 4, 3–10.
- Levings C.S. 3rd, 1993. Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5, 1285–1290.
DOI: https://doi.org/10.1105/tpc.5.10.1285
- Liu F., Cui X., Horner H.T., Weiner H., Schnable P.S., 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13, 1063–1078. https://doi.org/10.1105/tpc.13.5.1063
DOI: https://doi.org/10.1105/tpc.13.5.1063
- Luo H., Huang H., Long M., Zhou W., Liu X., Yang Y., 2001. Short communication: Responses of cytoplasmic male sterile lines to various restoring resources. Maydica 47, 67–69.
- Mackenzie S., 2012. Male sterility and hybrid seed production. In: A. Altman, P.M. Hasegawa (eds), Plant biotechnology and agriculture. Academic Press, 185–194. https://doi.org/10.1016/B978-0-12-381466-1.00012-2
DOI: https://doi.org/10.1016/B978-0-12-381466-1.00012-2
- Meyer J.M., 2010. Genetic characterization of the partial restorer of fertility gene, Rf8, in T cytoplasm. Graduate Theses and Dissertations. Iowa State University.
- Miedaner T., Glass C., Dreyer F., Wildman P., Wortman H., Geiger H.H., 2000. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101, 1226–1233. https://doi.org/10.1007/s001220051601
DOI: https://doi.org/10.1007/s001220051601
- Mou B.-T., Zhao Z.-F., Yue L., Li Ch., Zhang J., Li Z.-B., Shen H., Cao M.-J., 2019. Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C. Acta Agron. Sinica 45(2), 225–234. https://doi.org/10.3724/SP.J.1006.2019.083033
DOI: https://doi.org/10.3724/SP.J.1006.2019.83033
- Musgrave M.E., Antonovics J., Siedow J.N., 1986. Is male-sterility in plants related do lack of cyanide-resistant respiration in tissues?. Plant Sci. 44, 7–11.
DOI: https://doi.org/10.1016/0168-9452(86)90161-5
- Pelletier G., Budar F., 2007. The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr. Opin. Biotechnol. 18, 121–125.
DOI: https://doi.org/10.1016/j.copbio.2006.12.002
- Piątkowski J., 2016. Mechanistyczne oraz ewolucyjne aspekty oddziaływnia drożdżowych białek PPR z transkryptami mitochondrialnymi na przykładzie białka Dmr1. Rozprawa doktorska [Mechanistic and evolutionary aspects of interactions between yeast PPR proteins and mitochondrial transcripts, based on investigation into Dmr1 protein. Doctoral thesis]. Uniwersytet Warszawski, https://depotuw.ceon.pl/bitstream/handle/item/1938/1400-DR-BI-96263.pdf?sequence=1
- Qin X., Warguchuk R., Arnal N., Gaborieau L., Mireau H., Brown G.G., 2014. In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biol. 14, 313. https://doi.org/10.1186/s12870-014-0313-4
DOI: https://doi.org/10.1186/s12870-014-0313-4
- Rhoads D.M., Levings C.S 3rd., Siedow N., 1995. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J. Bioenerg. Biomembr. 27(4), 437–445.
DOI: https://doi.org/10.1007/BF02110006
- Schnable P.S., Wise R.P., 1994. Recovery of heritable, transposon-induced, mutant alleles of the rf2 nuclear restorer of T-cytoplasm maize. Genetics 136, 1171–1185.
DOI: https://doi.org/10.1093/genetics/136.3.1171
- Schnable P.S., Wise R.P., 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 3(5):175-180
DOI: https://doi.org/10.1016/S1360-1385(98)01235-7
- Sisco P.H., 1991. Duplications complicate genetic mapping of RF4, a restorer gene for cms-C cytoplasmic male sterility in corn. Crop Sci. 31, 1263–1266. https://doi.org/10.2135/cropsci1991.0011183X003100050036x
DOI: https://doi.org/10.2135/cropsci1991.0011183X003100050036x
- Sofi P.A., Rather A.G., Wani S.A., 2007. Genetic and molecular basis of cytoplasmic male sterility in maize. Commun. Biometry Crop Sci. 2(1), 49–60.
- Stamp P., Chowchong S., Menzi M., Weingartner U., Kaeser O., 2000. Increase in the yield of cytoplasmic male sterile maize revisited. Crop Sci. 40(6), 1586–1587. https://doi.org/10.2135/cropsci2000.4061586x
DOI: https://doi.org/10.2135/cropsci2000.4061586x
- Stojałowski S., Łapiński M., 2001. Wpływ różnych źródeł cytoplazmy wywołującej męską jałowość na właściwości rolnicze mieszańców żyta (Secale cereale L.) [Effect of different sources of male sterility-inducing cytoplasm on the agronomic performance of winter rye (Secale cereale L.) hybrids]. Biul. Inst. Hod. Aklim. Rośl. 220, 179–189.
- Storchova H., 2017. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. Review. Int. J. Mol. Sci. 18(2429). https://doi.org/10.3390/ijms18112429
DOI: https://doi.org/10.3390/ijms18112429
- Su A., Song W., Shi Z., Zhao Y., Xing J., Zhang R., Li C., Luo M., Wang J., Zhao J., 2017. Exploring differentially expressed genes associated with fertility instability of S-type cytoplasmic male-sterility in maize by RNA-seq. J. Integr. Agric. 16(8), 1689–1699.
DOI: https://doi.org/10.1016/S2095-3119(16)61494-6
- Tang J.H., Liu Z.H., Chen W.C., Hu Y.M., Ji Q.H., Ji L.Y., 2001. The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize. Sci. Agric. Sinica 34, 592–596.
- Touzet P., Budar F., 2004. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility?. TRENDS in Plant Sci. 9(12), 568–570. httpps://doi.org/10.1016/j.tplants.2004.10.001
DOI: https://doi.org/10.1016/j.tplants.2004.10.001
- Weingartner U., Camp K.-H., Stamp P., 2004. Impact of male sterility and xenia on grain quality traits of maize. Europ. J. Agron. 21, 239–247.
DOI: https://doi.org/10.1016/j.eja.2003.08.006
- Winiarczyk K., 1999. Męska i żeńska sterylność u roślin kwiatowych. Wiad. Bot. 43(1/2), 37–45.
- Wise R.P., Bronson C.R., Schnable P.S., Horner H.T., 1999. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Bot. Publ. Pap. 60.
DOI: https://doi.org/10.1016/S0065-2113(08)60911-6
- Xiao S., Zang J., Pei Y., Liu J., Liu J., Song W., Shi Z., Su A., Zhao J., and Chen H. 2020. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol. Plant. 13, 1270–1283. https://doi.org/10.1016/j.molp.2020.07.002
DOI: https://doi.org/10.1016/j.molp.2020.07.002
- Yen D.E., 1959. Pollen sterility in pukekohe longkeeper onions. New Zealand J. Agric. Res. 2(3), 605–612. https://doi.org/10.1080/00288233.1959.10418038
DOI: https://doi.org/10.1080/00288233.1959.10418038
- Yongming L., Zhuofan Z., Yanli L., Chuan L., Jing W., Boxiao D., Bing L., Tao Q., Wenbing Z., Moju C., 2016. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). PeerJ 4, e2719. https://doi.org/10.7717/peerj.2719
DOI: https://doi.org/10.7717/peerj.2719
- Zabala G., Gabay-Laughnan S., Laughnan J.R., 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147, 847–860.
DOI: https://doi.org/10.1093/genetics/147.2.847
- Zheng M., Yiang T., Liu X., Lu G., Zhang P., Jiang B., Zhou S., Lu Y., Lan H., Zhang S., Li C., Rong T., Cao M., 2020. qRf8-1, a novel QTL for the fertility restoration of maize cms-C identified by QTL-seq. G3 10, 2457–2464. https://doi.org/10.1534/g3.120.401192
DOI: https://doi.org/10.1534/g3.120.401192
Downloads
Download data is not yet available.