Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 80 Nr 1 (2025)

Artykuły

Efekty zmian konstrukcyjnych elementów roboczych maszyny do uprawy pasowej. Cz. II. Wzrost i plonowanie roślin, jakość plonów

DOI: https://doi.org/10.24326/as.2025.5472
Przesłane: 21 grudnia 2024
Opublikowane: 19.05.2025

Abstrakt

Postęp biologiczny i agrotechniczny w polowej produkcji roślinnej wymuszają nowe rozwiązania w budowie i eksploatacji maszyn rolniczych. Uprawa pasowa roli z jednoczesną aplikacją nawozu i siewem nasion wymaga specjalistycznych maszyn z elementami roboczymi dostosowanymi do warunków pracy. W wyniku badań i prac rozwojowych opracowano udoskonalone materiałowo i konstrukcyjnie zęby spulchniające glebę, aplikatory nawozów i redlice siewne hybrydowej maszyny pracującej w technologii jednego przejazdu. W doświadczeniach polowych oceniono efekty ich użycia w agrotechnice roślin ozimych i jarych. Określono wzrost, plonowanie i jakość plonów ozimych form pszenicy i rzepaku, a także jęczmienia jarego, grochu i kukurydzy. Plony tych roślin uprawianych z użyciem maszyny wyposażonej w innowacyjne elementy robocze były większe, w zależności od gatunku, o 2,7–6,9% od plonów z obiektów uprawianych maszyną standardową. Różnica plonów wynikała głównie z większej polowej zdolności wschodów roślin. Większe były również obsada roślin przed zbiorem i kłosów zbóż, a u kukurydzy masa ziarna z rośliny. Nasiona grochu uprawianego innowacyjną maszyną zawierały o 0,4 punktu procentowego więcej białka, a nasiona rzepaku o 0,4 p.p. tłuszczu niż nasiona roślin wysiewanych maszyną bez zmian konstrukcyjnych

Bibliografia

  1. Adee E., Hansel F.D., Ruiz Diaz D.A., Janssen K., 2016. Corn response as affected by planting distance from the center of strip-till fertilized rows. Front. Plant Sci. 7, 1232. https://doi.org/10.3389/fpls.2016.01232
  2. Barut Z.B., Ozdemir S., 2024a. The effect of different tillage methods on plant emergence parameters for wheat. W: E. Cavallo, F. Auat Cheein, F. Marinello, K. Saçılık, K. Muthukumarappan, P.C. Abhilash (red.), 15th International Congress on Agricultural Mechanization and Energy in Ag-riculture. Cham: Springer Nature Switzerland, 51–59. https://doi.org/10.1007/978-3-031-51579-8_6
  3. Barut Z.B., Ozdemir S., 2024b. Design approaches of one-pass strip-till machines. W: E. Cavallo, F. Auat Cheein, F. Marinello, K. Saçılık, K. Muthukumarappan, P.C. Abhilash (red.), 15th Inter-national Congress on Agricultural Mechanization and Energy in Agriculture. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51579-8_7
  4. Bečka D., Bečková L., Kuchtová P., Cihlář P., Pazderů K., Mikšík V., Vašák J., 2021. Growth and yield of winter oilseed rape under strip-tillage compared to conventional tillage. Plant Soil Envi-ron. 67(2), 85–91. https://doi.org/10.17221/492/2020-PSE
  5. Benincasa P., Zorzi A., Panella F., Tosti G., Trevini M., 2017. Strip tillage and sowing: is precision planting indispensable in silage maize?. Int. J. Plant Prod. 11(4), 577–588. http://dx.doi.org/10.22069/ijpp.2017.3719
  6. Bojarszczuk J., Księżak J., 2023. Efektywność ekonomiczna uprawy soi w zależności od sposobu uprawy. Ann. Pol. Assoc. Agric. Aribus. Econ. 25(4), 26–34. https://doi.org/10.5604/01.3001.0053.9739
  7. Boydas M.G., Turgut N., 2007. Effect of tillage implements and operating speeds on soil physical properties and wheat emergence. Turk. J. Agric. For. 31(6), 399–412. https://journals.tubitak.gov.tr/agriculture/vol31/iss6/6
  8. Celik A., Altikat S., Way T.R., 2013. Strip tillage width effects on sunflower seed emergence and yield. Soil Tillage Res. 131, 20–27. https://doi.org/10.1016/j.still.2013.03.004
  9. Cheng Z., Bai L., Wang Z., Wang F., Wang Y., Liang H., Wang Y., Rong M., Wang Z., 2024. Strip-till farming: combining controlled-release blended fertilizer to enhance rainfed maize yield while reducing greenhouse gas emissions. Agronomy 14(1), 136. https://doi.org/10.3390/agronomy14010136
  10. Fernández F.G., Sorensen B.A., Villamil M.B., 2015. A comparison of soil properties after five years of no‐till and strip‐till. Agron. J. 107(4), 1339–1346. https://doi.org/10.2134/agronj14.0549
  11. Håkansson I., Arvidsson J., Keller T., Rydberg T., 2011a. Effects of seedbed properties on crop emergence: 1. Temporal effects of temperature and sowing depth in seedbeds with favourable properties. Acta Agric. Scand. B Soil Plant Sci. 61(5), 458–468. https://doi.org/10.1080/09064710.2010.506446
  12. Håkansson I., Arvidsson J., Rydberg T., 2011b. Effects of seedbed properties on crop emergence: 2. Effects of aggregate size, sowing depth and initial water content under dry weather conditions. Acta Agric. Scand. B Soil Plant Sci. 61(5), 469–479. https://doi.org/10.1080/09064710.2010.506447
  13. Håkansson I., Keller T., Arvidsson J., Rydberg T., 2011c. Effects of seedbed properties on crop emergence. 4. Inhibitory effects of oxygen deficiency. Acta Agric. Scand. B Soil Plant Sci. 62(2), 166–171. https://doi.org/10.1080/09064710.2011.597423
  14. Håkansson I., Keller T., Arvidsson J., Rydberg T., 2011d. Effects of seedbed properties on crop emergence. 5. Effects of aggregate size, sowing depth and simulated rainfall after sowing on harmful surface-layer hardening. Acta Agric. Scand. B Soil Plant Sci. 62(4), 362–373. https://doi.org/10.1080/09064710.2011.622291
  15. Håkansson I., Rydberg T., Keller T., Arvidsson J., 2011e. Effects of seedbed properties on crop emergence: 3. Effects of firming of seedbeds with various sowing depths and water contents. Acta Agric. Scand. B Soil Plant Sci. 61(8), 701–710. https://doi.org/10.1080/09064710.2010.544668
  16. Hegazy R., Abd-Rabou A., Elsergany A.M., Abdelmouteleb I., 2021. Development and testing mounted multi-use agricultural seedbed preparation machine for Egyptian soils. J. Sus. Agric. Sci. 47(3), 13–26. http://dx.doi.org/10.21608/jsas.2020.50579.1251
  17. Jankowski K.J., Sokólski M., Szatkowski A., Załuski D., 2024. The effects of tillage systems on the management of agronomic factors in winter oilseed rape cultivation: a case study in north-eastern Poland. Agronomy 14(3), 437. https://doi.org/10.3390/agronomy14030437
  18. Jaskulska I., Jaskulski D., 2020. Strip-till one-pass technology in central and eastern Europe: A MZURI pro-til hybrid machine case study. Agronomy 10(7), 925. https://doi.org/10.3390/agronomy10070925
  19. Jaskulska I., Romaneckas K., Jaskulski D., Gałęzewski L., Breza-Boruta B., Dębska B., Lemano-wicz J., 2020. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy 10(10), 1596. https://doi.org/10.3390/agronomy10101596
  20. Korohou T., Okinda C., Li H., Torotwa I., Ding Q., Abbas A., 2022. Effect of no-till precise seed-ing on wheat (Triticum aestivum L.) population quality at the emergence stage. J. Anim. Plant Sci. 32(1), 186–198. https://doi.org/10.36899/JAPS.2022.1.0414
  21. Kriaučiūnienė Z., Saldukaitė L., Buragienė S., Adamavičienė A., Zabrodskyi A., Šarauskis E., 2023. Effect of strip tillage and direct seeding on winter wheat yield, diesel consumption and envi-ronment. Actual Tasks on Agricultural Engineering. Proceedings of the 49th International Symposium Opatija, Croatia, 28th February – 2nd March 2023, 41–49. https://atae.agr.hr/49th_ATAE_proceedings.pdf
  22. Kriaučiūnienė Z., Saldukaitė-Sribikė L., Zabrodskyi A., Adamavičienė A., Buragienė S., Šarauskis E., 2024. Impact of strip-till and no-till systems on soil, crop, and environment. W: Abstract proceedings for the: 22nd International Soil Tillage Research Organisation Conference, Virginia Beach, Virginia, United States of America, 22–27 September 2024, 48–49. https://hdl.handle.net/20.500.12259/271281
  23. Kumar D.V., Ramana C., Reddy K.V.S., Kaleemullah S., Reddy B.R., 2023. Optimization of ma-chine and operational parameters in the development of stubble manager cum crop planter. Int. J. Plant Soil Sci. 35(16), 12–23. https://doi.org/10.9734/ijpss/2023/v35i163124
  24. Lamichhane J., Soltani E., 2020. Sowing and seedbed management methods to improve establishment and yield of maize, rice and wheat across drought-prone regions: A review. J. Agric. Food Res. 2, 100089. https://doi.org/10.1016/j.jafr.2020.100089
  25. Leskovar D., Othman Y., Dong X., 2016. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res. 163, 266–273. https://doi.org/10.1016/j.still.2016.06.007
  26. Liu L., Wang X., Zhong X., Zhang X., Geng Y., Zhou H., Chen T., 2024. Design and experiment of furrow side pick-up soil blade for wheat strip-till planter using the discrete element method. J. Agric. Eng. 55(1), 1546. http://dx.doi.org/10.4081/jae.2023.1546
  27. Lovarelli D., Bacenetti J., 2017. Seedbed preparation for arable crops: Environmental impact of alternative mechanical solutions. Soil Tillage Res. 174, 156–168. https://doi.org/10.1016/j.still.2017.06.006
  28. Melnyk V., Artiomov M., Tsyganenko M., Romanashenko O., Anikeev O., 2021. Test results of co-seeding technology for forage production in Mix-Cropp farming system. W: Proceedings of 20th International Scientific Conference Engineering for Rural Development,
  29. May 26–28, 2021. Latvia University of Life Sciences and Technologies, 451–456. http://dx.doi.org/10.22616/ERDev.2021.20.TF095
  30. Mirzaev B.S., Ergashov G.H., Maiviatov F.M., Ravshanova N.B., Toshtemirov S.J., Begimkulova M.F., 2022. Justification of the parameters of the lister body. W: IOP Conference Series: Earth and Environmental Science 1076, 1, 012022. IOP Publishing. https://doi.org/10.1088/1755-1315/1076/1/012022
  31. Mitev G.V., Bratoev K., 2017. Experimental study of strip till machine. Int. Sci. J. Mech. Agric. Conserv. Resour. 63(1), 21–25.
  32. Morris N.L., Miller P.C.H., Orson J.H., Froud-Williams R.J., 2010. The adoption of noninversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – A review. Soil Tillage Res. 108(1–2), 1–15. https://doi.org/10.1016/j.still.2010.03.004
  33. Nadykto V., Domeika R., Golub G., Kukharets S., Chorna T., Čėsna J., Hutsol T., 2023. Research on a machine–tractor unit for strip-till technology. AgriEngineering 5(4), 2184–2195. https://doi.org/10.3390/agriengineering5040134
  34. Peel M.C., Finlayson B.L., McMahon T.A., 2007. Updated world map of the Köppen–Geiger cli-mate classification. Hydrol. Earth Syst. Sci. 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  35. Piechota T., 2017. Przegląd rynku maszyn do pasowej uprawy roli (strip-till). Technika Rolnicza, Ogrodnicza, Leśna 4, 2–4.
  36. Pieper J.R., Brown R.N., Amador J.A., 2015. Effects of three conservation tillage strategies on yields and soil health in a mixed vegetable production system. HortScience 50(12), 1770–1776. https://doi.org/10.21273/HORTSCI.50.12.1770
  37. Potratz D.J., Mourtzinis S., Gaska J., Lauer J., Arriaga F.J., Conley S.P., 2020. Strip‐till, other management strategies, and their interactive effects on corn grain and soybean seed yield. Agron. J. 112(1), 72–80. https://doi.org/10.1002/agj2.20067
  38. Różewicz M., Grabiński J., Wyzińska M., 2024. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophys. 38, 279–291. http://dx.doi.org/10.31545/intagr/188352
  39. Shargorodskiy S., Halanskyi V., 2024. Justification of construction and technological parameters of the strip-till section for strip tillage with the application of fertilizers. Eng. Energy Trans. AIC 1(124), 47–55. http://dx.doi.org/10.37128/2520-6168-2024-1-6
  40. Statistica 12. Data Analysis Software System, Version 12. TIBCO Software INC: Palo Alto, CA, USA, 2017. http://statistica.io
  41. Tabatabaeekoloor R., 2011. Soil characteristics at the in-row and inter-row zones after strip-tillage. Afr. J. Agric. Res. 6, 6598–6603. http://dx.doi.org/10.5897/AJAR11.722
  42. Townsend T.J., Ramsden S.J., Wilson P., 2016. How do we cultivate in England? Tillage practices in crop production systems. Soil Use Manag. 32(1), 106–117. https://doi.org/10.1111/sum.12241
  43. Trevini M., Benincasa P., Guiducci M., 2013. Strip tillage effect on seedbed tilth and maize produc-tion in Northern Italy as case study for the Southern Europe environment. Eur. J. Agron. 48, 50–56. https://doi.org/10.1016/j.eja.2013.02.007
  44. Vaitauskienė K., Šarauskis E., Romaneckas K., Jasinskas A., 2017. Design, development and field evaluation of row-cleaners for strip tillage in conservation farming. Soil Tillage Res. 174, 139–146. https://doi.org/10.1016/j.still.2017.07.006
  45. Wang Q., Wang B., Sun M., Sun X., Zhou W., Tang H., Wang J., 2023. Design and testing of an automatic strip-till machine for conservation tillage of corn. Agronomy 13(9), 2357. https://doi.org/10.3390/agronomy13092357
  46. Williams A., Davis A.S., Ewing P.M., Grandy A.S., Kane D.A., Koide R.T., Mortensen D.A., Smith R.G., Snapp S.S., Spokas K.A., Yannarell A.C., Jordan N.R., 2016. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US Corn Belt. Ge-oderma 273, 12–19. https://doi.org/10.1016/j.geoderma.2016.03.010
  47. Yang Y., Fielke J., Ding Q., He R., 2018. Field experimental study on optimal design of the rotary strip-till tools applied in rice-wheat rotation cropping system. Int. J. Agric. Biol. Eng. 11(2), 88–94. https://doi.org/10.25165/j.ijabe.20181102.3347
  48. Yang Y., Hu Z., Gu F., Ding Q., 2023. Simulation and experimental study of the tillage mechanism for the optimal design of wheat rotary strip–tiller blades. Agriculture 13(3), 632. https://doi.org/10.3390/agriculture13030632

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.