Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 2 (2024)

Artykuły

Grain yield, grain quality and weed infestation of winter wheat after various previous crops

DOI: https://doi.org/10.24326/as.2024.5304
Przesłane: 22 listopada 2023
Opublikowane: 02-12-2024

Abstrakt

Grain yield and quality as well as the weed infestation of winter wheat grown after potatoes, peas and winter wheat were evaluated in the study. The experiment was established in a system of randomized blocks, in three replications. The experimental results were statistically processed via the analysis of variance method. Coefficients of Pearson’s linear correlation between grain yield and its components, grain quality parameters, and the number and air-dry weight of weeds were also calculated. Grain yields of winter wheat were higher when it was grown after potato and pea than after winter wheat. In addition, winter wheat grains harvested from plots with potato and pea as previous crops had a higher total protein content and a higher sedimentation index than those harvested from plots with winter wheat as the previous crop. However, the study years affected the protein, gluten and starch contents of winter wheat grain to a greater extent than the previous crops did. A higher number of weeds with a higher air-dry weight was recorded on the post-winter wheat than on the post-potato and post-pea plots. Negative values of correlation coefficients were computed between the number of weeds and their air-dry weight and grain yield, number of spikes, grain weight per spike, 1000 grain weight, total protein content of the grain, and the value of sedimentation index as well as between weed number and wet gluten content of the grain.

Bibliografia

  1. Alijošius S., Švirmickas G.J., Bliznikas S., Gružauskas R., Šašytė V., Racevičiūtė-Stupelienė A., Kliševičiūtė V., Daukšienė A., 2016. Grain chemical composition of different varieties of winter cereals. Zemdirbyste 103(3), 273–280. https://doi.org/10.13080/z-a.2016.103.035
  2. Banach J.K., Majewska K., Żuk-Gołaszewska K., 2021. Effect of cultivation system on quality changes in durum wheat grain and flour produced in North-Eastern Europe. PLoS ONE 16(1), e0236617. https://doi.org/10.1371/journal.pone.0236617
  3. Bobryk-Mamczarz A., Rachoń L., Kiełtyka-Dadasiewicz A., Szydłowska-Tutaj M., Lewko P., Woźniak A., 2022. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. II. Wartość technologiczna ziarna [Yielding and quality of selected species and cultivars of pasta wheat. Part. II. Technological value of grain]. Agron. Sci. 77(1), 65–78 [in Polish]. https://doi.org/10.24326/as.2022.1.6
  4. Dziki D., Cacak-Pietrzak G., Gawlik-Dziki U., Miś A., Różyło R., Jończyk K., 2017. Physicochem-ical Properties and milling characteristic of spring wheat from different farming sys-tems. J. Agr. Sci. Tech. 19(6), 1253–1266.
  5. Gawęda D., Woźniak A., Harasim E., 2018. Weed infestations of winter wheat depend on the fore-crop and the tillage system. Acta Agrobot. 71(3), 1744. https://doi.org/10.5586/aa.1744
  6. Gomez-Becerra H.F., Erdem H., Yazici A., Tutus Y., Torun B., Ozturk L., Cakmak I., 2010. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal. Sci. 52(3), 342–349. https://doi.org/10.1016/j.jcs.2010.05.003
  7. Gosme M., Willosquet L., Lucas P., 2007. Size, shape and intensity of aggregation of take-all dis-ease during natural epidemics in second wheat crops. Plant Pathol. 56(1), 87–96. http://dx.doi.org/10.1111/j.1365-3059.2006.01503.x
  8. Gutteridge R.J., Hornby D., 2003. Effects of sowing data and volunteers on the infectivity of soil infested with Gaeumannomyces graminis var. tritici and on take-all disease in successive crops of winter wheat. Ann. Appl. Biol. 143(3), 272–82. https://doi.org/10.1111/j.1744-7348.2003.tb00295.x
  9. Gutteridge R.J., Jenkyn J.F., Bateman G.L., 2006. Effects of different cultivated or weed grasses, grown as pure stands or in combination with wheat, on take-all and its suppression in subse-quent wheat crops. Plant Pathol. 55(5), 696–704. http://dx.doi.org/10.1111/j.1365-3059.2006.01405.x
  10. Hemmat A., Eskandari I., 2004. Tillage system effects upon productivity of dryland winter wheat-chickpea rotation in the northwest region of Iran. Soil Till. Res. 78(1), 69–81. http://dx.doi.org/10.1016/j.still.2004.02.013
  11. Herridge D.F., Peoples M.B., Boddey R.M., 2008. Global input of biological nitrogen fixation in agricultural systems. Plant Soil 311(1–2), 1–18. http://dx.doi.org/10.1007/s11104-008-9668-3
  12. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. FAO, Rome. https://www.fao.org/3/i3794en/I3794en.pdf [date of access: 10. 03. 2023].
  13. Kirkegaard J.A., Simpfendorfer S., Holland J., Bambach R., Moore K.J., Rebetzke G.J., 2004. Effect of previous crops on crown rot and yield of durum and bread wheat in northern NSW. Aust. J. Agric. Res. 55(3), 321–334. https://doi.org/10.1071/AR03178
  14. Lal R., 2009. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60(2), 158–169. http://dx.doi.org/10.1111/j.1365-2389.2008.01114.x
  15. Lal B., Gautam P., Raja R., Tripathi R., Shahid M., Mohanty S., Panda B.B., Bhattacharyya P., Nayak A.K., 2016. Weed seed bank diversity and community shift in a four-decade-old fertili-zation experiment in rice–rice system. Ecol. Eng. 86, 135–145. https://doi.org/10.1016/j.ecoleng.2015.10.030
  16. Li C., Moore-Kucera J., Lee J., Corbin A., Brodhagen M., Miles C., Inglis D., 2014. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. http://dx.doi.org/10.1016/ j.apsoil.2014.02.012
  17. Liu L., Kong J., Cui H., Zhang J., Wang F., Cai Z., Huang X., 2016. Relationships of decomposa-bility and C/N ratio in different types of organic matter with suppression of Fusarium ox-ysporum and microbial communities during reductive soil disinfestation. Biol. Control 101, 103–113. http://dx.doi.org/10.1016/j.biocontrol.2016.06.011
  18. Lu J.C., Watkins K.B., Teasdale J.R., Abdul-Baki A.A., 2000. Cover crops in sustainable food production. Food Rev. Inter. 16, 121–157. http://dx.doi.org/10.1081/FRI-100100285
  19. Mohammadi R., Sadeghzadeh B., Ahmadi M.M., 2020. Evaluation of genotype x environment interaction in durum wheat (Triticum turgidum L. var. durum) regional yields trials. Iran. J. Crop Sci. 22(1), 15–31. http://dx.doi.org/10.29252/abj.22.1.15
  20. Meena R.S., Lal R., 2018. Legumes and sustainable use of soils. In: R. Meena, A. Das, G. Yadav, R. Lal R. (eds), Legumes for soil health and sustainable management. Springer, Singapore.
  21. Nath C.P., Hazra K.K., Kumar N., Singh S.S., Praharaj C.S., Singh U., Singh N.P. Nandan R., 2022. Impact of crop rotation with chemical and organic fertilization on weed seed density, spe-cies diversity, and community structure after 13 years. Crop Prot. 153, 105860. https://doi.org/10.1016/j.cropro.2021.105860
  22. Peoples M.B., Brockwell J., Herridge DF., Rochester I.J., Alves B.I.R., Urquiaga S., Boddey R.M., Dakota F.D., Bhattarai S., Maskey S.L. Sampet C., Rerkasem B., Khan D.F., Hauggaard-Nielsen H., Jensen E.S., 2009. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3), 1–17. http://dx.doi.org/10.1007/ BF03179980
  23. Pranagal J., Woźniak A., 2021. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 243, 106408. https://doi.org/10.1016/ j.agwat.2020.106408
  24. Pullaro T.C., Marino P.C., Jackson D.M., Harrison H.F., Keinath A.P., 2006. Effects of killed cover crop mulch on weeds, weed seeds and herbivores. Agric. Ecosyst. Environ. 115(1–4), 97–104. https://doi.org/10.1016/j.agee.2005.12.021
  25. Rachoń L., Bobryk-Mamczarz A., Kiełtyka-Dadasiewicz A., Woźniak A., Stojek Z., Zajdel-Stępień P., 2022. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. I. Plonowanie [Yielding and quality of selected species and cultivars of pasta wheat. Part I. Yield-ing]. Agron. Sci. 77(1), 53–63 [in Polish]. https://doi.org/10.24326/as.2022.1.5
  26. Rachoń L., Szumiło G., Brodowska M., Woźniak A., 2015. Nutritional value and mineral composi-tion of grain of selected wheat species depending on the intensity of a production technology. J. Elem. 20(3), 705–715. https://doi.org/10.5601/jelem.2014.19.4.640
  27. Rasool R., Kukal S.S., Hira G.S., 2008. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize–wheat system. Soil Till. Res. 101(1–2), 31–36. http://dx.doi.org/10.1016/j.still.2008.05.015
  28. Roger-Estrade J., Anger C., Bertrand M., Richard G., 2010. Tillage and soil ecology: Partners for sustainable agriculture. Review. Soil Till. Res. 111(1), 33–40. https://doi.org/10.1016/j.still. 2010.08.010
  29. Siddique K.H.M., Johansen C., Turner N.C., Jeuffory M.H., Hashem A., Sakar D., Gan Y., Alghamdi S.S., 2012. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32(1), 45–64. http://dx.doi.org/10.1007/s13593-011-0021-5
  30. Singh D.P., Singh D., 2017. Effect of nitrogen and FYM on yield, quality and uptake of nutrients in wheat (Triticum aestivum). Ann. Plant Soil Res. 19(2), 232–236.
  31. Sułek A., Cacak-Pietrzak G., Różewicz M., Nieróbca A., Grabiński J., Studnicki M., Sujka K., Dziki D., 2023. Effect of production technology intensity on the grain yield, protein content and amino acid profile in common and durum wheat grain. Plants 12(2), 364. https://doi.org/10.3390/plants12020364
  32. Tracy B.F., Davis A.S., 2009. Weed biomass and species composition as affected by an integrated crop-livestock system. Crop Sci. 49, 1523–1530. https://doi.org/10.2135/cropsci2008.08.0488
  33. Wang X., Fan J., Xing Y., Xu G., Wang H., Deng J., Wang Y., Zhang F., Li P., Li Z., 2019. Chap-ter three – the effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 153, 121–173.
  34. Woźniak A., 2022. Seed yield and weed infestation of pea (Pisum sativum L.), and soil properties in the systems of conventional and conservation agriculture. Acta Sci. Pol. Hort. Cult. 21(5), 139–151. https://doi.org/10.24326/asphc.2022.5.12
  35. Woźniak A., Soroka M., 2018. Effect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 16(3), 3087–3096. https://dx.doi.org/10.15666/aeer/1603_30873096
  36. Woźniak A., Kawecka-Radomska M., 2016. Crop management effect on chemical and biological properties of soil. Int. J. Plant Prod. 10(3), 391–402.
  37. Zhang P., Ma G., Wang C., Lu H., Li S., Xie Y., Guo T., 2017. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 12(6), e0178494. http://dx.doi.org/10.1371/journal.pone.0178494

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 57 58 59 60 61 62 63 64 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.