Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 80 Nr 1 (2025)

Artykuły

Zmienność genetyczna i fenotypowa linii jarej pszenicy zwyczajnej (Triticum aestivum L.) o wysokim potencjale hodowlanym

DOI: https://doi.org/10.24326/as.2025.5470
Przesłane: 14 stycznia 2025
Opublikowane: 19.05.2025

Abstrakt

W pracy przedstawiono ocenę zróżnicowania genetycznego oraz zmienności fenotypowej 38. linii jarej pszenicy zwyczajnej pochodzących z Hodowli Roślin Strzelce Sp. z o.o., Grupa IHAR. Do genotypowania wykorzystano markery dominujące silicoDArT oraz kodominujące SNP. Największy dystans genetyczny obserwowano na podstawie polimorfizmu markerów SNP pomiędzy liniami: STH_12 i STH_37 (0,579), natomiast na podstawie polimorfizmu markerów silicoDArT pomiędzy liniami: STH_1 i STH_33 (0,728). Analiza struktury przeprowadzona metodą grupowania Bayesowskiego wykazała obecność trzech genetycznie odrębnych grup (K = 3) na podstawie segregacji alleli SNP oraz sześciu odrębnych grup (K = 6) na podstawie segregacji alleli silicoDArT. Największym współczynnikiem zmienności spośród analizowanych cech użytkowych charakteryzowały się: plon ziarna z poletka (18,0%) oraz termin kłoszenia (17,5%). Obserwowano istotne zróżnicowanie średnich wartości terminu kłoszenia, masy hektolitra i liczby ziaren z kłosa pomiędzy grupami, do których zostały przypisane badane linie hodowlane na podstawie analizy struktury populacji.

Bibliografia

  1. Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., Coleman-Derr D., Conley E.J., Crossman C.C., Deal K.R., Dubcovsky J., Gill B.S., Gu Y.Q., Hadam J., Heo H., Huo N., Lazo G.R., Luo M.-C., Ma Y.Q., Matthews D.E., McGuire P.E., Morrell P.L., Qualset C.O., Renfro J., Tabanao D., Talbert L.E., Tian C., Toleno D.M., Warburton M.L., You F.M., Zhang W., Dvorak J., 2010. Nucleotide diversity maps reveal variation in di-versity among wheat genomes and chromosomes. BMC Genomics 14(11), 702. https://doi.org/10.1186/1471-2164-11-702
  2. Beral A., Girousse C., Le Gouis J., Allard V. Slafer G.A., 2022. Physiological bases of cultivar differences in average grain weight in wheat: Scaling down from plot to individual grain in elite material. Field Crops Res. 289, 108713. https://doi.org/10.1016/j.fcr.2022.108713
  3. Biel W., Maciorowski R., 2012. Ocena wartości odżywczej ziarna wybranych odmian pszenicy. Żywn. Nauka Technol. Jakość 2(81), 45–55.
  4. Bolibok H., Rakoczy-Trojanowska M., Hromada A., Pietrzykowaski R., 2005. Efficiency of differ-ent PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica 146, 109–116. https://doi.org/10.1007/s10681-005-0548-0
  5. Booy G., Hendriks R.J.J., Smulders M.J.M., Groenendael J.M., Vosman B., 2000. Genetic diversi-ty and the survival of populations. Plant Biol. 2(4), 379–395. https://doi.org/10.1055/s-2000-5958
  6. Brown W.L., 1983. Genetic diversity and genetic vulnerability-An appraisal. Econ. Bot. 37(4), 12. https://doi.org/10.1007/BF02859301
  7. El-Esawi M.A., Witczak J., Abomohra A.E.–F., Ali H.M., Elshikh M.S., Ahmad M., 2018. Analy-sis of the genetic diversity and population structure of Austrian and Belgian wheat germplasm within a regional context based on DArT markers. Genes 9(1), 47. https://doi.org/10.3390/genes9010047
  8. Evanno G., Regnaut S., Goudet J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  9. Georges A., 2022 TechNote: distance and visualization in population genetics. http://georges.biomatix.org/storage/app/media/uploaded-files/TECHNICAL_NOTE_Genetic_Distance_27-Feb-22.pdf [dostęp: 08.05.2025 r.].
  10. Geyer M., Mohler V., Hartl L., 2022. Genetics of the inverse relationship between grain yield and grain protein content in common wheat. Plants 11(16), 2146. https://doi.org/10.3390/plants11162146
  11. GUS, 2024. Wynikowy szacunek głównych ziemiopłodów rolnych i ogrodniczych w 2024 r. https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/wynikowy-szacunek-glownych-ziemioplodow-rolnych-i-ogrodniczych-w-2024-roku,5,23.html
  12. Hussain S., Habib M., Ahmed Z., Sadia B., Bernardo A., Amand P., Bai G., Ghori N., Khan A.I., Awan F.S., Maqbool R., 2022. Genotyping-by sequencing based molecular genetic diversity of Pakistani bread wheat (Triticum aestivum L.) accessions. Front. Genet. 13, 772517 https://doi.org/10.3389/fgene.2022.772517
  13. Jędzura S., Bocianowski J., Matysik P., 2023. The AMMI model application to analyze the geno-type-environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Res. Commun. 51, 197–205. https://doi.org/10.1007/s42976-022-00296-9
  14. Kirk H., Freeland J.R., 2011. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://10.3390/ijms12063966
  15. Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I., 2015. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387
  16. Mańkowski D., Laudański Z., Janaszek Z., 2011. Przydatność wybranych miar podobieństwa dla danych binarnych do analiz wielocechowych w badaniach molekularnych. Biul. IHAR 262, 155–173. https://orcid.org/0000-0002-7499-8016
  17. Mazurek J., Sułek A., 2000. Plon i cechy struktury plonu odmian i rodów pszenicy jarej w zależno-ści od terminu siewu. Biul. IHAR 214, 79–83.
  18. Mourad A.M.I., Belamkar V., Baenziger P.S., 2020. Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics 21, 434. https://doi.org/10.1186/s12864-020-06835-0
  19. Nei M., Li W.-H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76, 5269–5273.
  20. Novoselovic D., Bentley A.R., Šimek R., Dvojkovic K., Sorrells M.E., Gosman N., Horsnell R., Drezner G., Šatovic Z., 2016. Characterizing Croatian wheat germplasm diversity and structure in a European context by DArT markers. Front. Plant Sci. 7, 184. https://doi.org/10.3389/fpls.2016.00184
  21. Oury F.X., Godin C., 2007. Yield and grain protein concentration in bread wheat: How to use the negative relationship between the two characters to identify favourable genotypes?. Euphytica 157, 45–57. https://doi.org/10.1007/s10681-007-9395-5
  22. Peakall R., Smouse P., 2012. Appendix 1 – Methods and statistics in GenAlEx 6.1. https://1library.co/document/9yn73vjz-appendix-methods-statistics-genalex-rod-peakall-peter-smouse.html [dostęp: 8.05.2025 r.].
  23. Poland J.A., Rife T.W., 2012. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5, 92–102. https://doi.org/10.3835/plantgenome2012.05.0005
  24. Pritchard J.K., Stephens M., Donnelly P., 2000. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Genetics 155, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x
  25. Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y., Xu J., 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8(2), 34. https://doi.org/10.3390/plants8020034
  26. Roldan-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A., De Loose M., 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6, 125–134. https://doi.org/10.1023/A:1009680614564
  27. Rudnicki F., Jaskulski D., Dębowski G., 1999. Reakcje odmian pszenicy jarej na termin siewu i nawożenie azotem w warunkach posusznych. Rocz. Nauk Roln. Ser. A 114, 3–4, 97–107.
  28. Sansaloni C., Franco J., Santos B., Percival-Alwyn L., Singh S., Petroli C., Campos J., Dreher K., Payne T., Marshall D., Kilian B., Milne I., Raubach S., Shaw P., Stephen G., Carling J., Saint Pierre C., Burgueño J., Crosa J., Li H., Guzman C., Kehel Z., Amri A., Kilian A., Wenzl P., Uauy C., Banziger M., Caccamo M., Pixley K., 2020. Diversity analysis of 80,000 wheat ac-cessions reveals consequences and opportunities of selection footprints. Nat Commun. 11, 4572. https://doi.org/10.1038/s41467-020-18404-w
  29. Sansaloni C., Petroli C., Jaccoud D., Carling J., Detering F., Grattapaglia D., Kilian A., 2011. Di-versity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 5(Suppl 7), P54. https://doi.org/10.1186/1753-6561-5-S7-P54
  30. Serrote CML, Reiniger LRS, Silva KB, Rabaiolli SMDS, Stefanel CM., 2020. Determining the polymorphism information content of a molecular marker. Gene 5, 726, 144175. https://doi.org/10.1016/j.gene.2019.144175
  31. Sokal R.R., Jacquez G.M., Wooten M.C., 1989. Spatial autocorrelation analysis of migration and selection. Genetics 121(4), 845–855. https://doi.org/10.1093/genetics/121.4.845
  32. Soleimani B., Lehnert H., Keilwagen J., Plieske J., Ordon F., Naseri Rad S., Ganal M., Beier S., Perovic D., 2020. Comparison between core set selection methods using different illumina marker platforms: a case study of assessment of diversity in wheat. Front. Plant Sci. 11, 1040. https://doi.org/10.3389/fpls.2020.01040
  33. Stojałowski S., 2007. Polimorfizm markerów STS i SSR w obrębie linii wsobnych żyta. Biul. IHAR 244, 161–172. https://doi.org/10.37317/biul-2007-0054
  34. Studnicki M., Mądry W., Śmiałowski T., 2009. Wielocechowa analiza różnorodności fenotypowej w kolekcji roboczej pszenicy jarej. Biul. IHAR 252, 91–104. https://doi.org/10.37317/biul-2009-0059
  35. Sułek A., 2004. Określenie reakcji nowych rodów i odmian pszenicy jarej na wybrane czynniki agrotechniczne. Biul. IHAR 231, 139–145.
  36. Swarup S., Cargill E.J., Crosby K., Flagel L., Kniskern J., Glenn K.C., 2020. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852. https://doi.org/10.1002/csc2.20377
  37. Szőke-Pázsi K., Kruppa K., Tulpová Z., Kalapos B., Türkösi E., Gaál E., Darkό E., Said M., Farkas A., Kovács P., Ivanizs L., Doležel J., Rabanus-Wallace M.T., Molnár I., Szakács E., 2024. DArTseq genotyping facilitates the transfer of “exotic” chromatin from a Secale cereale × S. strictum hybrid into wheat. Front. Plant Sci. 15, 1407840. https://doi.org/10.3389/fpls.2024.1407840
  38. Tagliotti M.E., Deperi S.I., Bedogni M.C., Zhang R., Carpintero N.M., Coombs J., Douches D., Huarte M.A., 2018. Use of easy measurable phenotypic traits as a complementary approach to evaluate the population structure and diversity in a high heterozygous panel of tetraploid clones and cultivars. BMC Genet. 19, 8. https://doi.org/10.1186/s12863-017-0556-9
  39. Tang S., Wei X., Jiang Y., Brar D., Khush G., 2007. Genetic diversity based on allozyme alleles of Chinese cultivated rice. Agric. Sci. China 6, 641–646. https://doi.org/10.1016/S1671-2927(07)60094-7
  40. Tang W., Dong Z., Gao L. Wang X., Li T., Sun C., Chu Z., Cui D., 2023. Genetic diversity and population structure of modern wheat (Triticum aestivum L.) cultivars in Henan Province of China based on SNP markers. BMC Plant Biol. 23, 542. https://doi.org/10.1186/s12870-023-04537-9
  41. TIBCO Software Inc., 2017. Statistica (data analysis software system), version 13. http://statistica.io
  42. Tomkowiak A., Bocianowski J., Kwiatek M., Kowalczewski P.Ł., 2020. Dependence of the hetero-sis effect on genetic distance, determined using various molecular markers. Open Life Sci. 28(15), 1–11. https://doi.org/10.1515/biol-2020-0001
  43. Tomkowiak A., Bocianowski J., Radzikowska D., Kowalczewski P.Ł., 2019. Selection of parental material to maximize heterosis using SNP and SilicoDarT markers in maize. Plants 14, 8(9), 349. https://10.3390/plants8090349
  44. Tyrka M., Mokrzycka M., Bakera B., Tyrka D., Szeliga M., Stojałowski S., Matysik P., Rokicki M., Rakoczy-Trojanowska M., Krajewski P., 2021. Evaluation of genetic structure in European wheat cultivars and advanced breeding lines using high-density genotyping-by-sequencing ap-proach. BMC Genomics 22(1), 81. https://doi.org/10.1186/s12864-020-07351-x
  45. Vinu V., Singh N., Vasudev S., Yadava D.K., Kumar S., Naresh S., Bhat S.R., Prabhu K.V., 2013. Assessment of genetic diversity in Brassica juncea (Brassicaceae) genotypes using phenotypic differences and SSR markers. Rev. Biol. Trop. 61(4), 1919–1934.
  46. Wenda-Piesik A., Knapowski T., Ropińska P., Kazek M., 2017. Jakość ziarna jarych odmian pszenicy zwyczajnej (Triticum aestivum L. EMEND. FIORI ET PAOL.) wysiewanych późną je-sienią i wiosną. Acta Agroph. 24(4), 613–624.
  47. Woźniak A., 2006. Plonowanie i jakość ziarna pszenicy jarej zwyczajnej (Triticum aestivum L.) i twardej (Triticum durum Desf.) w zależności od poziomu agrotechniki. Acta Agroph. 8(3), 755–763.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.