Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 74 Nr 3 (2019)

Artykuły

Wpływ aplikacji wybranych odpadów na zagęszczenie gleby

DOI: https://doi.org/10.24326/as.2019.3.2
Przesłane: 5 lipca 2019
Opublikowane: 07-12-2019

Abstrakt

W latach 2014–2017 przeprowadzono doświadczenie polowe, w którym doglebowo zaaplikowano dwa rodzaje odpadów. Jednym z nich był odpad mineralny – skała karbońska pochodząca z kopalni węgla kamiennego, a drugim odpad organiczny – osad pofermentacyjny z biogazowni rolniczej. Doświadczenie było przykładem działania, w którym skojarzono doglebowe zagospodarowanie odpadów z ich meliorującym działaniem na glebę. Odpady aplikowano do gleby lekkiej, o niskiej wartości użytkowej, zaliczonej do V klasy bonitacyjnej i 6 kompleksu rolniczej przydatności – żytniego słabego. Według klasyfikacji WRB była to Haplic Podzol (PZha) – gleba bielicowa typowa (LWt) wytworzona z piasku polodowcowego. Celem badań była analiza zmian zagęszczenia gleby spowodowanych jednorazowym wprowadzeniem odpadów. Podczas czteroletnich badań (2014–2017) obserwowano także trwałość tych zmian. Stwierdzono, że najlepsze efekty zmniejszenia zagęszczenia gleby uzyskano w wyniku łącznej aplikacji dwóch odpadów: skały karbońskiej i osadu pofermentacyjnego. Wprowadzenie do gleby odpadów miało też trwały charakter, gdyż jeszcze w czwartym roku eksperymentu utrzymywały się różnice wynikające z doglebowego zagospodarowania odpadów.

Bibliografia

  1. Arshad M.A., Lowery B., Grossman B., 1996. Physical tests for monitoring soil quality. In: J.W. Doran, A.J. Jones (ed.), Methods for assessing soil quality. Soil Sci. Soc. Am. Spec. Publ. 49, 123–142.
  2. Baran S., Pranagal J., Bik M., 2008. Możliwości wykorzystania wełny mineralnej Grodan i osadu ściekowego do kształtowania właściwości wodnych w glebach zdewastowanych w procesie wydobycia siarki metodą Frasha [Usefulness of mineral wool Grodan and sewage sludge in management of water properties in soils devastated during extraction of sulphur by Frash method]. Gospod. Surow. Miner. – Miner. Res. Manag. 24(2/3), 81–95 [in Polish with English summary].
  3. Baran S., Bielińska E.J., Smal H., Wójcikowska-Kapusta A., Paluszek J., Pranagal J., Żukowska G., Chmielewski S., Futa B., 2014. Innovative methods of soils protection and remediation [Innowacyjne metody ochrony i rekultywacji gleb]. Komitet Inżynierii Środowiska PAN – Polish Academy of Sciences, Committee of Environmental Engineering, Lublin, 120, 1–260.
  4. Cockroft B., Olsson K.A., 1997. Case study of soil quality in south-eastern Australia: man-agement of structure for roots in duplex soils. In: E.G. Gregorich, M.R. Carter (eds), Soil Quality for Crop Production and Ecosystem Health. Dev. Soil Sci. 25, 339–350.
  5. Drewry J.J., Cameron K.C., Buchan G.D., 2008. Pasture yield and soil physical property re-sponses to soil compaction from treading and grazing – a review. Aust. J. Soil Res. 46, 237–256. doi.org/10.1071/SR07125.
  6. Edwards C.A., 2002. Assessing the effects of environmental pollutans on soil organisms, communities, processes and ecosystems. Eur. J. Soil Biol. 38, 225–231.
  7. Hillel D., Rosenzweig C., 2012. Conclusion: Agricultural solutions for climate change at global and regional scales. In: D. Hillel, C. Rosenzweig (eds), Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications. ICP Series on Climate Change Impacts, Adaptation, and Mitigation 2, Imperial College Press, London, 281–292.
  8. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
  9. Jones C.A., 1983. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J. 47, 1208–1211.
  10. Kowda W.A., 1984. Podstawy nauki o glebach [Basics of soil science]. PWRiL, Warsaw, Poland [in Polish].
  11. Lal R., 2015. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 7(5), 5875–5895, https:// doi.org/10.3390/su7055875
  12. Logsdon S.D., Karlen D.L., 2004. Bulk density as a soil quality indicator during conversion to no-tillage. Soil Till. Res., 78, 143–149, https://doi.org/10.1016/j.still.2004.02.003
  13. McQueen D.J., Shepherd T.G., 2002. Physical changes and compaction sensitivity of a fine textured, poorly drained soil (Typic Endoaquept) under varying durations of cropping, Manawatu Region, New Zealand. Soil Till. Res. 63, 93–107, https://doi.org/10.1016/j.still.2005.04.009
  14. Minister of Agriculture and Rural Development, 2008. Regulation on the implementation of certain provisions of the Act on fertilizers and fertilization of 18 June 2008 (Dz.U. No. 119 item 765 with later d.) – Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 16 kwietnia 2008 r. w sprawie szczegółowego sposobu stosowania nawozów oraz prowadzenia szkoleń z zakresu ich stosowania (Dz.U. z 2008 r. Nr 80 poz. 479 z późn. zm., – Dz.U. z 2014 r. poz. 393).
  15. Mueller L., Kay B.D., Been B., Hu C., Zhang Y., Wolff M., Eulenstein F., Schindler U., 2008. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany. Soil Till. Res. 103, 188–196, https://doi.org/10.1016/j.still.2008.09.010
  16. Olness A., Clapp C.E., Liu R., Palazzo A.J., 1998. Biosoild and their effect on soil properties. In: A. Wallace, R.E. Terry (eds), Handbook of Soil Condytioners. Marcel Dekker, New York, 141–165.
  17. Paluszek J., 2011. Kryteria oceny jakości fizycznej gleb uprawnych Polski [Criteria of evaluation of physical quality of Polish arable soils]. Acta Agrophys. 191, 1–139.
  18. Pranagal J., 2011. The physical state of selected silty soils of the Lublin Region. Stan fizyczny wybranych gleb pyłowych Lubelszczyzny. Rozprawy Naukowe Uniwersytetu Przyrodniczego w Lublinie – Dissertations, University of Life Sciences in Lublin, Poland, 353, 1–129.
  19. Pranagal J., Podstawka-Chmielewska E., Słowińska-Jurkiewicz A., 2007. Influence on selected physical properties of a Haplic Podzol during a ten-year fallow period. Pol. J. Environ. Stud. 16(2), 875–880.
  20. Pranagal J., Podstawka-Chmielewska E., 2012. Physical properties of a Rendzic Phaeozem during a ten-year period of fallowing under the conditions of south-eastern Poland. Geo-derma 189–190, 262–267, https://doi.org/10.1016/j.geoderma.2012.06.023
  21. Pranagal J., Oleszczuk P., Tomaszewska-Krojańska D., Kraska P., Różyło K., 2017. Effect of biochar application on the physical properties of Haplic Podzol. Soil and Tillage Research, 174, 92–103, https://doi.org/10.1016/j.still.2017.06.007
  22. Reynolds W.D., Bowman B.T., Drury C.F., Tan C.S., Lu X., 2002. Indicators of good soil physical quality: density and storage parameters. Geoderma 110, 131–146.
  23. Reynolds W.D., Drury C.F., Yang X.M„ Tan C.S., 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 146, 466–474, https://doi.org/10.1016/j.geoderma.2008.06.017
  24. Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang X.M., 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 152, 252–263, https://doi.org/10.1016/j.geoderma.2009.06.009
  25. Różyło K., Oleszczuk P., Jośko I,, Kraska P., Kwiecińska-Poppe E., Andruszczak S., 2015. An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ. Sci. Pollut. Res. 22(10), 7833–7842, https://doi.org/10.1007/s11356-014-3927-z
  26. Różyło K., Gawlik-Dziki U., Świeca M., Różyło R., Pałys E., 2016. Winter wheat fertilized with biogas residue and mining waste: yielding and the quality of grain. J. Sci. Food Agric. 96(10), 3454–3461, https://doi.org/10.1002/jsfa.7528
  27. Thompson L.M., Troeh F.R., 1978. Soil and soil fertility. McGraw-Hill Inc., New York, 516 pp.
  28. Tomaszewska-Krojańska D., Pranagal J., 2017a. Organizacyjno-prawne uwarunkowania przyrodni-czego zagospodarowania wybranych odpadów [Organizational and legal conditions for the natural management of selected waste]. Przem. Chem. 96(8), 1629–1631, https://doi.org/10.15199/62.2017.8.XX
  29. Tomaszewska-Krojańska D., Pranagal J., 2017b. Management of carboniferous rock and waste mineral wool in the context of current Polish legislation. Mineralogia 48, 1–4, https://doi.org/10.1515/mipo-2017-0012
  30. Van-Camp L., Bujarrabal B., Gentile A.R., Jones R.J.A., Montanarella L, Olazabal C., Sel-varadjou S.K., 2004. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. EUR 21319 EN/3, 311–496.
  31. Walczak R., Ostrowski, J., Witkowska-Walczak B., Sławiński C., 2002. Hydrophysical characteristics of Polish mineral arable soils. Hydrofizyczne charakterystyki mineralnych gleb uprawnych w Polsce. Acta Agrophys. 79, 1–64.
  32. Weber J., Karczewska A., Drozd J., Licznar M., Licznar S., Jamroz E., Kocowicz A., 2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 39, 1294–1302, https://doi.org/10.1016/j.soilbio.2006.12.005

Downloads

Download data is not yet available.

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.