Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 75 No. 4 (2020)

Articles

Chemical composition and biological value of kale depending on the varied mineral fertilization

DOI: https://doi.org/10.24326/as.2020.4.8
Submitted: April 20, 2020
Published: 2020-12-10

Abstract

The increase in human awareness of healthy nutrition is related to an intensification of vegetable species’ demand with high nutritional value. Kale (Brassica oleracea L. var. acephala) is a valuable plant due to its rich chemical composition, biological value, and small agrotechnical requirements. In the greenhouse experiment, the effect of the K2SO4 dose (0.4, 0.8, 1.2, 1.6 g K·dm–3) was analyzed against the background of two doses of calcium carbonate (5 and 15 g CaCO3·dm–3) on yielding, chemical composition and biological value of kale. The largest kale yield was obtained after applying 1.2 g K·dm–3 in the medium; both higher and lower potassium doses reduced the yield. Kale is a good source of vitamin C. Studies have shown that the content of this substance in the leaves was from 130 to 216 mg·100 g–1 f.m. and depended on the dose of potassium. Increasing potassium doses also resulted in higher protein concentrations in plants. A significant increase in the content of nitrogen and potassium in plants was found, along with an increase in potassium sulfate dose.

References

  1. Ayaz F.A., Glew R.H., Millson M., Huang, H.S., Chuang L.T., Sanz C., Hayirlioglu-Ayaz, S., 2006. Nutrient contents of kale (Brassica oleraceae L. var. acephala DC). Food Chem. 96(4), 572–579.
  2. Barzegar T., Mogammadi S., Ghahremani Z., 2020. Effect of nitrogen and potassium fertilizer on growth, yield and chemical composition of sweet fennel. J. Plant Nutr. 43(8), 1189–1204. https://doi.org/10.1080/01904167.2020.1724306
  3. Becerra-Moreno A.P.A., Alanís-Garza J.L., Mora-Nieves J.P., Mora-Mora P., Jacobo-Velázquez D.A., 2014. Kale: An excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CyTA – J. Food. 12, 298–303. https://doi.org/10.1080/19476337.2013.850743
  4. Cardoso C.P., Mattos Della Lucia C., César Stringheta P., Benício Paes Chaves J., Pinheiro-Sant’Ana A., 2009. Carotene and provitamin A content of vegetables sold in Viçosa, MG, Brazil, during spring and winter. Braz. J. Pharm. Sci. 45, 527–537. https://doi.org/10.1590/S1984-82502009000300019
  5. Di Noia J., 2014. Defining powerhouse fruits and vegetables: a nutrient density approach. Prev. Chronic Dis. 11, E95. https://doi.org/10.5888/pcd11.130390
  6. Dzida K., 2010. Biological value and essential oil content in sweet basil (Ocimum basilicum L.) depending on calcium fertilization and cultivar. Acta Sci. Pol. Hortorum Cultus 9(4), 153–161.
  7. Dzida K., Jarosz Z., 2010. Effect of calcium carbonate and differentiated nitrogen fertilization upon the yield and chemical composition of spinach beet. Acta Sci. Pol. Hortorum Cultus 9(3), 201–210.
  8. Flaczyk E., Przeor M., Kobus-Cisowska J., Biegańska-Marecik R., 2014. Ocena jakości sensorycznej nowych potraw z jarmużem (Brassica oleracea). Bromat. Chem. Toksykol. 47(3), 392–396.
  9. Golcz A., Kozik E., 2004. Effect of several agrotechnical factors on vitamin C content in pepper (Capsicum annuum L.) and lettuce (Lactuca sativa L.). Rocz. AR w Pozn. 356, Ogrodnictwo 37, 65–74.
  10. Hanafy A.H., Kahlil M.K., Farrag A.M., 2002. Nitrate accumulation, growth, yield and chemical composition of Rocket (Eruca vesicaria Sub sp. sativa) plant as affected by NPK fer-tilization, kinetin and salicylic acid. Annal. Agric. Sci. Ain Shams Univ., Egypt 47, 1–26.
  11. Horobowicz M., Saniewski M., 2000. Likopen i inne karotenoidy – występowanie i wartość biologiczna. Zesz. Nauk. AR Krak. Ogrod. 364, 71, 13–18.
  12. Hwang E.S., Bornhorst G.M., Oteiza P.I., Alyson E.M. 2019. Assessing the fate and bioavailability of glucosinolates in Kale (Brassica oleracea) using simulated human digestion and Caco-2 Cell Uptake Models. J. Agric. Food Chem. 67(34), 9492–9500. https://doi.org/10.1021/acs.jafc.9b03329
  13. Isidora R., Pavlovic M., Sala F., Adina B., 2008. Potassium fertilization influence upon vegetables yield quality and soil fertility protection. Res. J. Agric. Sci. 40(2), 147–152.
  14. Korus A., 2011. Level of Vitamin C, Polyphenols, and Antioxidant and Enzymatic Activity in Three Varieties of Kale (Brassica Oleracea L. var. acephala) at Different Stages of Maturity. Int. J. Food Proper. 14(5), 1069–1080. https://doi.org/10.1080/10942910903580926
  15. Korus A., Kmiecik W., 2007. Content of carotenoids and chlorophyll pigments in kale (Brassica oleracea L. var. acephala) depending on the cultivar and the harvest date. EJPAU 10(1), 28.
  16. Kozik E., 2006. Wpływ terminu zbioru oraz nawożenia azotem i potasem na zawartość azotanów w sałacie uprawianej w szklarni. Acta Agrophys. 7(3), 633–642.
  17. Krężel J., Kołota E., Ściążko D., 1998. Wpływ terminu siewu oraz terminu zbioru na skład aminokwasowy białka dwóch odmian jarmużu. Zesz. Nauk. ATR Bydg. Rol. 215(42), 119–123.
  18. Krochmal-Marczak B., Sawicka B., Stryjecka M., Pisarek M., Bienia B., 2017. Wartość odżywcza i prozdrowotna wybranych warzyw z rodzaju kapusta (Brassica L.). Herbalism 1(3), 80–91.
  19. Kunachowicz H., Nadolna I., Przygoda B., Iwanow K., 2005. Tabele składu i wartości odżywczej żywności. Instytut Żywności i Żywienia, Warszawa.
  20. Lester G.E., Jifon J.J., Makus D.J., 2010. Impact of potassium nutrition on food quality of fruits and vegetables: A condensed and concise review of the literature. Better Crops 94(1), 18–21.
  21. Łata B., Wińska-Krysiak M., 2006. Skład chemiczny jarmużu uprawianego na dwóch typach gleby. Acta Agrophys. 7(3), 663–607.
  22. Marques D.J., Bianchini H.C., Lobato A.K.S., Silva W.F., 2018. Potassium fertilization in the production of vegetables and fruits. Intech Open 4, 45–68. https://doi.org/10.5772/intechopen.72854
  23. Migliozzi D., Thavarajah P., Thavarajah D., Smith P., 2015. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition. Nutrients 7(11), 9285–9298. https://doi.org/10.3390/nu7115471
  24. Nurzyński J., 1999. Nawożenie a skład chemiczny warzyw. Zesz. Probl. Post. Nauk Rol. 466, 31–40.
  25. Olsen H., Grimmer S., Aaby K., Saha S., Borge G.I.A., 2012. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica) J. Agric. Food Chem. 60(30), 7375–7383. https://doi.org/10.1021/jf300875f
  26. Sanlier N., Guler S., 2018. Human on Vegetables Brassica of Benefits Health. J. Health Human 104(1), 1–13.
  27. Sikora E., Bodziarczyk I., 2012. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. Acta Sci. Pol., Technol. Aliment. 11(3), 239–248.
  28. Skąpski H., Dąbrowska B., 1994. Uprawa warzyw w polu. Wyd. SGGW, Warszawa.
  29. Truong K., 2017. The Effects of Nitrogen and Potassium on the Growth of Brassica rapa. Best Integrated Writing 4(11), 88–99. https://doi.org/10.3897/bdj.4.e7720.figure2f
  30. Wang M., Zheng Q., Shen Q., Guo S., 2013. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 14(4), 7370–7390. https://doi.org/10.3390/ijms14047370

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.