Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 71 No. 2 (2016)

Articles

Effect of bottom ash and soil contamination with cadmium on the chemical composition of maize

DOI: https://doi.org/10.24326/as.2016.2.2
Submitted: May 8, 2019
Published: 2019-05-08

Abstract

The experiment concerning the effect of furnace waste on the chemical composition of maize was conducted under conditions of a three-year pot experiment. The arable soil was amended with bottom ash in the amount of 23.33 g ∙ pot-1 as well as with increasing doses of cadmium (between 3 and 15 mg ∙ kg-1 soil d.m.). Introduction of ash and cadmium in the amount from 3 to 5 mg ∙ kg-1 d.m. to the soil had a significant effect on the increase of the yield of above-ground parts and roots of maize. The application of cadmium in doses from 7 to 15 mg ∙ kg-1 caused a considerable reduction in the yield of the tested plant. It was shown that the applied furnace ash influenced the decrease in the yielding of maize.

Introduction of furnace ash to cadmium contaminated soil significantly influenced the increase in the content of Na, K, Mg, Ca and Si in maize biomass and the decrease in the content of P in maize. Among the studied elements, K was translocated from the roots to the above-ground parts most efficiently, and Na and Si – least efficiently, the evidence of which are the values of the translocation factor for these elements.

The research shows that ash in cadmium contaminated soil influenced immobilization of phosphorus, and thereby limited the phytoavailability of this element. It was established that the above-ground parts took up more K, Mg, Ca, P, Si with the yield while and maize roots took up more Na. The lowest uptake of the studied metals by maize was observed in the treatment where only furnace ash was applied.

References

Antonkiewicz J., 2010. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of legume-grass mixture. J. Elem. 15, 3, 435–443, DOI: 10.5601/jelem.2010.15.3.435-443.

Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M., Sendor R., 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiol. Plant. 38, 40, pp. 11, DOI: 10.1007/s11738-016-2062-5.

Antonkiewicz J., Radkowski A., 2006. Przydatność wybranych gatunków traw i roślin motylkowatych do biologicznej rekultywacji składowisk popiołów paleniskowych. Annales UMCS, sec. E, Agricultura 61, 413–421.

Audet P., Charest C., 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environ. Pollut. 147(2007), 231–237.

Bączek-Kwinta R., Antonkiewicz J., Maślak J., Oleksiewicz A., 2008. Zawartość sodu, potasu, magnezu i wapnia w częściach różnych odmian i genotypów kukurydzy (Zea mays L.). Zesz. Probl. Post. Nauk Roln. 524, 231–238.

Bączek-Kwinta R., Filek W., Grzesiak S., Hura T., 2006. The effect of soil drought and rehydration on growth and antioxidative activity in flag leaves of triticale. Biol. Plant. 50, 1, 55–60, DOI: 10.1007/s10535-005-0074-x.

Czech T., Gambuś F., Wieczorek J., 2013. Assessment of chemical composiotion of waste materials from hard coal burning In view of their agricultural and environmental applications. Ecol. Engin. 34, 89–95, DOI: 10.12912/23920629/323.

Czuba R., Mazur T. 1988. Wpływ nawożenia na jakość plonów. Wyd. PWN, Warszawa, ss. 360.

Demeyer A., Nkana J.C.V., Verloo M.G., 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 3, 287–295, DOI:10.1016/S0960-8524(00)00043-2.

Epstein E., Bloom A.J., 2004. Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, 47, 207–225.

Falkowski M., Kukułka I., Kozłowski S., 2000. Właściwości chemiczne roślin łąkowych. Wyd. AR Poznań, ss. 132.

Gascho G.J., 2001. Charter 12 Silicon sources for agriculture. Stud. Plant Sci. 8, 197–207, DOI: 10.1016/S0928-3420(01)80016-1.

Gray C.A., Schwab P.A., 1993. Phosphorus-fixing ability of high pH, high calcium, coal-combustion, waste materials. Water Air Soil Pollut. 69, 309–320, DOI: 10.1007/BF00478167.

Guo X.F., Wei Z.B., Wu Q.T., Qiu J.R., Zhou J.L., 2011. Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere 21(5), 650–656, http://dx.doi.org/10.1016/S1002-0160(11)60167-7.

Gupta D.K., Rai U.N., Tripathi R.D., Inouhe M., 2002. Impacts of fly-ash on soil and plant responses. J. Plant Res. 115, 401–409, DOI: 10.1007/s10265-002-0057-3.

Kabata-Pendias A., Piotrowska M., Motowicka-Terelak T., Maliszewska-Kordybach T., Filipiak K., Krakowiak A., Pietruch Cz., 1995. Podstawy oceny chemicznego zanieczyszczenia gleb – metale ciężkie, siarka i WWA. Państwowa Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska, Warszawa, ss. 41.

Kim R.Y., Yoon J.K., Kim T.S., Yang J.E., Owens G., Kim K.R., 2015. Bioavailability of heavy metals in soils: definitions and practical implementation – a critical review. Environ. Geochem. Health. 37, 1041–1061, DOI: 10.1007/s10653-015-9695-y.

Kołodziej B., Antonkiewicz J., Sugier D., 2016. Miscanthus × giganteus as a biomass feedstock grown on municipal sewage sludge. Ind. Crops Prod. 81, 72–82, DOI: 10.1016/j.indcrop.2015.11.052.

Kusznierewicz B., Bączek-Kwinta R., Bartoszek A., Piekarska A., Huk A., Manikowska A., Antonkiewicz J., Namieśnik J., Konieczka P., 2012. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica Oleracea var. Capitata F. Alba). Environ. Toxicol. Chem. 31, 11, 2482–2489, DOI: 10.1002/etc.1977.

Li X., Chen Q., Zhou Y., Tyrer M., Yu Y., 2014. Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Manage. 34, 2494–2504, DOI: 10.1016/j.wasman.2014.08.027.

Lu S.G., Sun F.F., Zong Y.T., 2014. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114, 37–44, DOI: 10.1016/j.catena.2013.10.014.

Mackowiak C.L., Myer R.O., Blount A.R., Foster J.L., Barnett R.D., 2011. Yield and mineral concentration of southeastern United States oat cultivars used for forage. J. Plant Nutr. 34(12), 1828–1842, DOI: 10.1080/01904167.2011.600410.

Mazur J., Konieczyński J., 2004. Dystrybucja pierwiastków śladowych we frakcjach ziarnowych popiołu lotnego emitowanego z elektrowni. Monografia, Wyd. Polit. Śląskiej, Gliwice, ss. 118.

Mondol M.N., Chamon A.S., Rahman M.M., 2012. Influence of plant residual compost and ash on yield and economic performance of cherry tomato. Bangladesh J. Sci. Ind. Res. 47, 4, 387–392, DOI: 10.3329/bjsir.v47i4.14067.

Paleckienė R., Sviklas A.M., Šlinkšienė R., Štreimikis V., 2010. Complex fertilizres produced from the sunflower husk ash. Pol. J. Environ. Stud. 19, 5, 973–979.

Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J-W. 2011. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185, 549–574, DOI: 10.1016/j.jhazmat.2010.09.082.

Płodzik M., 1996. Wpływ wapnowania łąk kwaśnych na jakość siana określoną wartościami ilorazów zawartości wybranych makro- i mikroelementów. Wiad. IMUZ 29(1), 157–171.

Prado R.M., Corrêa M.C.M., Natale W., 2002. The effect of ash from ceramic industry on the soil chemistry and on the nutrition of guava plants. Acta Sci. Agron. 24, 5, 1493–1500, DOI: 10.4025/actasciagron.v24i0.2412.

Ratajczak T., Gaweł A., Górniak K., Muszyński M., Szydlak T., Wyszomirski P., 1999. Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych. Wyd. Polskie Towarzystwo Mineralogiczne, Prace Specjalne 13, 9–34.

Rivera N., Kaur N., Hesterberg D., Ward C.R., Austin R.E., Duckworth O.W., 2015. Chemical composition, speciation, and elemental associations in coal fly ash samples related to the Kingston ash spill. Energy Fuels 29, 2, 954–967, DOI: 10.1021/ef501258m.

Rolka E., 2015. Effect of soil contamination with cadmium and application of neutralizing substances on the yield of oat (Avena sativa L.) and on the uptake of cadmium by this crop. J. Elem. 20, 4, 975–986. DOI: 10.5601/jelem.2014.19.4.810.

Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi. Dz.U. 2002 nr 165 poz. 1359, http://isap.sejm.gov.pl/DetailsServlet?id=WDU20021651359.

Rozporządzenie Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów. Dz.U. 2014 poz. 1923, http://isap.sejm.gov.pl/DetailsServlet?id=WDU20140001923.

Sakamoto K., Isobe Y., Dong X., Gao S., 2001. Simulated acid rein leaching characteristics of acid soil amended with bio-briquette combustion ash. Water Air Soil Pollut. 130, 1, 1451–1456, DOI: 10.1023/A:1013913014071.

Sanglard L.M.V.P., Martins S.C.V., Detmann K.C., Silva P.E.M., Lavinsky A.O., Silva M.M., Detmann E., Araújo W.L., DaMatta F.M., 2014. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol. Plant. 152, 355–366, DOI: 10.1111/ppl.12178.

Seshadri B., Bolan N.S., Naidu R., Brodie K., 2010. The role of coal combustion products in managing the bioavailability of nutrients and heavy metals in soils. J. Soil Sci. Plant Nutr. 10(3), 378–398.

Sharma A., Sachdeva S., 2015. Cadmium toxicity and its phytoremediation a review. Int. J. Sci. Engin. Res. 6, 9, 395–405.

Sitarz-Palczak E., Kalembkiewicz J., 2012. Study of remediation of soil contamined with heavy metals by coal fly ash. J. Environ. Prot. 3, 1373–1383, DOI: 10.4236/jep.2012.310156.

Smołka-Danielowska D., 2006. Heavy metals in fly ash from a coal-fired power station in Poland. Pol. J. Environ. Stud. 15, 6, 943–946.

Stanisławska-Glubiak E., Korzeniowska J., Kocon A., 2015. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environ. Sci. Pollut. Res. 22, 4706-4714, DOI: 10.1007/s11356-014-3706-x.

Systematyka gleb Polski, 2011. Rocz. Glebozn. 62, 3, 1–193, http://www.ptg.sggw.pl.

Szulc W., Rutkowska B., Hoch M., Spychaj-Fabisiak E., Murawska B., 2015. Exchangeable silicon content of soil in long-term fertilization experiment. Plant Soil Environ. 61, 10, 458–461, DOI: 10.17221/438/2015-PSE.

Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Goutam D., Shri M., Trivedi P.K., Chakrabarty D., 2013. Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol. Engin. 52, 96–103, DOI: 10.1016/j.ecoleng.2012.12.057.

Underwood S.J., 1971. Żywienie mineralne zwierząt. PWRiL, Warszawa, ss. 319.

Weber J., Strączyńska S., Kocowicz A., Gilewska G., Bogacz A., Gwiżdż M., Debicka M., 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena, 133, 250–254, DOI: 10.1016/j.catena.2015.05.016.

Wilkins D.A., 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80, 3, 623–633, DOI: 10.1111/j.1469-8137.1978.tb01595.x.

Wyszkowski M., 2002. Kształtowanie się relacji między makroelementami w owsie w zależności od zanieczyszczenia gleby ołowiem. J. Elem. 7, 4, 300–308.

Downloads

Download data is not yet available.