Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 4 (2022)

Articles

Weed composition in conventionally and organically grown medical and aromatic plants

DOI: https://doi.org/10.24326/asphc.2022.4.12
Submitted: June 10, 2020
Published: 2022-08-31

Abstract

This study aimed to compare weed flora in conventionally and organically grown medicinal and aromatic plants (MAPs): basil, pot marigold, dill, and peppermint; in terms of weed composition and weed abundance. A total of 28 weed species (25 and 15 species in conventional and organic crops, respectively) were identified.
The presence and abundance of certain weed species were affected by MAP species and farming system. Higher weed diversity and weediness, and lower floristic similarity were found in conventionally grown crops. Also, the analysed MAPs differed in weediness by individual weed species. Correspondence analysis pointed to conventional and organic MAPs with the most frequent and most abundant weed species. Setaria pumila and Portulaca oleracea were the most frequent species in conventional; and Amaranthus retroflexus, Datura stramonium, and Sorghum halepense in organic crops. In both conventional and organic farming systems, therophytes were the most dominant life forms indicating a strong anthropogenic influence. The results should contribute to establishing weed control measures that are adequate for the two farming systems.

References

  1. Abouziena, H.F., Haggag Wafaa, M. (2016). Weed control in clean agriculture: a review. Planta Daninha, 34(2), 377–392. https://doi.org/10.1590/S0100-83582016340200019 DOI: https://doi.org/10.1590/S0100-83582016340200019
  2. Baker, C., Madakadze, I.C., Swanepoel, C.M., Mavunganidze, Z. (2018). Weed species composition and density under conservation agriculture with varying fertiliser rate. S. Afr. J. Plant Soil, 35(5), 329–336. https://doi.org/10.1080/02571862.2018.1431814 DOI: https://doi.org/10.1080/02571862.2018.1431814
  3. Barberi, P. (2002). Weed management in organic agriculture: are we addressing the right issues? Weed Res., 42(3), 177–193. https://doi.org/10.1046/j.1365-3180.2002.00277.x DOI: https://doi.org/10.1046/j.1365-3180.2002.00277.x
  4. Barroso, J., Miller, Z.J., Lehnhoff, E.A., Hatfield, P.G., Menalled, F.D. (2015). Impacts of cropping system and management practices on the assembly of weed communities. Weed Res., 55(4), 426–435. https://doi.org/10.1111/wre.12155 DOI: https://doi.org/10.1111/wre.12155
  5. Benaragama, D., Shirtliffe, S.J., Johnson, E.N, Duddu, H.S.N., Syrovy, L.D. (2016). Does yield loss due to weed competition differ between organic and conventional cropping systems? Weed Res., 56(4), 274–283. https://doi.org/10.1111/wre.12213 DOI: https://doi.org/10.1111/wre.12213
  6. Blackshaw, R.E., Brandt, R.N. (2008). Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci., 56(5), 743–747. https://doi.org/10.1614/WS-08-065.1 DOI: https://doi.org/10.1614/WS-08-065.1
  7. Brdar-Jokanović, M., Ljevnaić-Mašić, B., Džigurski, D., Koren, A., Merkulov-Popadić, L., Nikolić, L., Adamović, D. (2018). Weed flora in organic common mallow (Malva sylvestris L.). Contemp. Agric., 67(2), 143–148. https://doi.org/10.2478/contagri-2018-0020 DOI: https://doi.org/10.2478/contagri-2018-0020
  8. Carrubba, A. (2017). Weed and weeding effects on medicinal herbs. In: Ghorbanpour, M., Varma, A. (eds). Medicinal plants and environmental challenges. Springer, Cham, 295–327. https://doi.org/10.1007/978-3-319-68717-9_17 DOI: https://doi.org/10.1007/978-3-319-68717-9_17
  9. Carrubba, A., Catalano, C. (2009). Essential oil crops for sustainable agriculture – a review. In: Lichtfouse, E. (ed.). Climate change, intercropping, pest control and beneficial microorganisms. Sustainable Agriculture Reviews, vol. 2, Springer, Dordrecht, 137–188. DOI: https://doi.org/10.1007/978-90-481-2716-0_8
  10. Carrubba, A., Militello, M. (2013). Nonchemical weeding of medicinal and aromatic plants. Agron. Sustain. Dev., 33(3), 551–561. https://doi.org/10.1007/s13593-012-0122-9 DOI: https://doi.org/10.1007/s13593-012-0122-9
  11. DAISIE (2018). Delivering Alien Invasive Species Inventories for Europe. Available: https://www.europe-aliens. org/ [date of access: 20.01.2018].
  12. EEC (1991). Council regulation (ECC) No. 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1991R2092:20060506:EN:PDF [date of access: 22.07.2019].
  13. EEC (1992). Council regulation (ECC) No. 2078/92 on agricultural production methods compatible with the requirements of the protection of the environment and the maintenance of the countryside. Report from the Commission to the Council and the European Parliament. Available: http://aei.pitt.edu/6215/1/6215.pdf [date of access: 20.07.2019].
  14. GISD (2019). Global Invasive Species Database. Available: http://www.iucngisd.org/gisd/ [date of access: 28.09.2019].
  15. He, F., Legendre, P. (2002). Species diversity patterns derived from species-area models. Ecol., 83(5), 1185–1198. https://doi.org/10.1890/0012-9658(2002)083[1185:SDPDFS]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2002)083[1185:SDPDFS]2.0.CO;2
  16. Hendawy, S.F., Abouziena, H.F., Abd El-Razik, T.M., Amer, H.M., Hussein, M.S. (2019). Winter weeds and its control in the medicinal plants in Egypt: a survey study. Egypt. Pharm. J., 18(1), 16–26. https://doi.org/10.4103/epj.epj_13_18 DOI: https://doi.org/10.4103/epj.epj_13_18
  17. Honermeier, B., Ali, S., Leschhorn, B., Mahmood, A., Ijaz, M., Russo, M., Shafiee-Hajiabad, M., Ullah, H., Zeller, S. (2013). Cultivation of medicinal and spice plants in Germany – a review. Int. J. Agric. Biol., 15(6), 1379–1388.
  18. José-María, L., Blanco-Moreno, J.M., Armengot, L., Sans, F.X. (2011). How does agricultural intensification modulate changes in plant community composition? Agric. Ecosyst. Environ., 145(1), 77–84. https://doi.org/10.1016/j.agee.2010.12.020 DOI: https://doi.org/10.1016/j.agee.2010.12.020
  19. Jost, L. (2010). The relation between evenness and diversity. Diversity, 2(2), 207–232. https://doi.org/10.3390/d2020207 DOI: https://doi.org/10.3390/d2020207
  20. Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F.A., Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingruber, F.H., Theurillat J.P., Urmi E., Vust, M., Wohlgemuth, T. (2010). Flora indicative – ecological indicator values and biological attributes of the flora of Switzerland and the Alps. 2nd ed. Haupt, Bern, pp. 376.
  21. Lazarević, P., Stojanović, V., Jelić, I., Perić, R., Krsteski, B., Ajtić, R., Sekulić, N., Branković, S., Sekulić, G., Bjedov, V. (2012). Preliminarni spisak invazivnih vrsta u Republici Srbiji sa opštim merama kontrole i suzbijanja kao potpora budućim zakonskim aktima. Zaštita Prirode. Zavod za zaštitu prirode Srbije. [Preliminary list of invasive species in the Republic of Serbia with general control and suppression measures to support future legislation. Protection of Nature. Institute for Nature Conservation of Serbia]. 62(1), 5–31 [in Serbian].
  22. Magurran, A.E. (2004). Measuring biological diversity. Blackwell Publishing.
  23. Nikolić T. (2015). Flora Croatica Datebase. Faculty of Science, University of Zagreb. Available: http://hirc.botanic.hr/fcd [date of access: 16.02.2020].
  24. Nkoa, R., Owen, M.D.K., Swanton, C.J. (2015). Weed abundance, distribution, diversity, and community analyses. Weed Sci., Issue SP1, 64–90. https://doi.org/10.1614/WS-D-13-00075.1 DOI: https://doi.org/10.1614/WS-D-13-00075.1
  25. Pinke, G., Blazsek, K., Magyar, L., Nagy, K., Karácsony, P., Czúcz, B., Botta-Dukát, Z. (2016). Weed species composition of conventional soybean crops in Hungary is determined by environmental, cultural, weed management and site variables. Weed Res., 56(6), 470–481. https://doi.org/10.1111/wre.12225 DOI: https://doi.org/10.1111/wre.12225
  26. Ryan, M.R., Smith, R.G., Mortensen, D.A., Teasdale, J.R., Curran, W.S., Seidel, R., Shumway, D.L. (2009). Weed–crop competition relationships differ between organic and conventional cropping systems. Weed Res., 49(6), 572–580. https://doi.org/10.1111/j.1365-3180.2009.00736.x DOI: https://doi.org/10.1111/j.1365-3180.2009.00736.x
  27. Roschewitz, I., Gabriel, D., Tscharntke, T., Thies, C. (2005). The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J. Appl. Ecol., 42(5), 873–882. https://doi.org/10.1111/j.1365-2664.2005.01072.x DOI: https://doi.org/10.1111/j.1365-2664.2005.01072.x
  28. Sans, F.X., Berner, A., Armengot, L., Mäder, P. (2011). Tillage effects on weed communities in an organic winter wheat–
  29. sunflower–spelt cropping sequence. Weed Res., 51(4), 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x DOI: https://doi.org/10.1111/j.1365-3180.2011.00859.x
  30. Scott, J.K., Webber, B.L., Murphy, H., Ota, N., Kriticos, D.J., Loechel, B. (2014). Weeds and climate change: supporting weed management adaptation, AdaptNRM. Available: https://adaptnrm.csiro.au/wp-content/uploads/2014/08/Adapt-NRM_M2_WeedsTechGuide_5.1_LR.pdf [date of access: 12.07.2019].
  31. Schippmann, U., Leaman, D.J., Cunningham, A.B. (2002). Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. In: FAO. Biodiversity and the ecosystem approach in agriculture, forestry and fisheries. Satellite event on the occasion of the Ninth Regular Session of the Commission on Genetic Resources for Food and Agriculture. 12–13 October 2002, Inter-Departmental Working Group on Biological Diversity for Food and Agriculture. Rome, 1–21. Available: http://www.fao.org/3/aa010e/AA010E00.pdf [date of access: 6.07.2022].
  32. Shannon, C.E., Weaver, W. (1949). The mathematical theory of communication. Open J. Forest., 4(5), 1–117.
  33. Stirling, G., Wilsey, B. (2001). Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat., 158(3), 286–299. https://doi.org/10.1086/321317 DOI: https://doi.org/10.1086/321317
  34. Takhtajan, A. (2009). Flowering Plants. 2nd ed. Springer. Thomas, A.G., Derksen, D.A., Blackshaw, R.E., Van Acker, R.C., Légère, A., Watson, P.R., Turnbull, G.C. (2017). A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 52(5), 874-880. https://doi.org/10.1614/WS-04-010R1 DOI: https://doi.org/10.1614/WS-04-010R1
  35. Travlos, I.S, Cheimona, N., Roussis, I., Bilalis, D.J. (2018). Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci., 6, 11. https://doi.org/10.3389/fenvs.2018.00011 DOI: https://doi.org/10.3389/fenvs.2018.00011
  36. Ujvárosi, M. (1973). Gyomnövények. Mezőgazdasági Kiado [Weeds. Agricultural Publishing], Budapest [in Hungarian].
  37. WHO (2003). Guidelines on good agricultural and collection practices (GACP) for medicinal and aromatic plants. World Health Organization Publications, Geneva. Available: http://apps.who.int/medicinedocs/pdf/s4928e/s4928e.pdf [date of access: 30.10.2019].
  38. Zhang, H., John, R., Peng, Z., Yuan, J., Chu, C., Du, G.,
  39. Zhou, S. (2012). The relationship between species richness and evenness in plant communities along a successional gradient: a study from sub-Alpine meadows of the Eastern Qinghai-Tibetan Plateau, China. PLoS One, 7(11): e49024. https://doi.org/10.1371/journal.pone.0049024 DOI: https://doi.org/10.1371/journal.pone.0049024

Downloads

Download data is not yet available.