Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 2 (2023)

Articles

Black bean aphid populations and chlorophyll composition changes as responses of guelder rose to aphid infestation stress conditions

DOI: https://doi.org/10.24326/asphc.2023.4503
Submitted: December 8, 2021
Published: 2023-04-28

Abstract

Aphis fabae Scop. is phloem-feeding insect that cause substantial damage to horticulare and agriculture worldwide due to feeding – related damage and the transmission of economically important plant viruses. These aphids cause a detrimental effects in attacked organs, like depletion of photoassimilates. Insect feeding can among others reduced chlorophyll catabolism. In the present investigations we determined the chlorophyll a and b levels (SPAD readings) in uninfested leaves and in Aphis fabae-infested leaves of Viburnum opulus shrubs, wild plants and garden variety, which were grown in green areas around Siedlce, east central Poland. Feeding by A. fabae affected chlorophyll a + b level. The insect feeding reduces the concentration of photosynthetic pigment in the infested shrubs. The level of chlorophyll in plants occupied by aphids was clearly lower than the level in plants where aphids were not found. We also found that chlorophyll levels increased with the progress of growing season, the level of chlorophyll differed between date of survey, being higher for the latest survey (mid-June) and that the place where the plant is located is important, wild V. opulus have slightly more level of chlorophyll compared to garden ones. Chlorophyll level might be useful as an indicator of plant responses to aphid damage.

References

  1. Abbot, P., Tooker, J., Lawson, S.P. (2018). Chemical ecology and sociality in aphids: opportunities and directions. J. Chem. Ecol., 44, 770–784. https://doi.org/10.1007/s10886-018-0955-z DOI: https://doi.org/10.1007/s10886-018-0955-z
  2. Adebayo, A.H., Balade, A., Yakubu, O.F. (2017). Gas chromatography-mass spectrometry analysis of Viburnum opulus (L.) extract and its toxicity studies in rats. Asian J. Pharm. Clin. Res., 10(6), 383–388. http://dx.doi.org/10.22159/ajpcr.2017.v10i6.17350 DOI: https://doi.org/10.22159/ajpcr.2017.v10i6.17350
  3. Beketov, M.A., Kefford, B.J., Schäfer, R.C., Liess, M. (2013). Pesticides reduce regional biodiversity of stream invertebrates. PNAS, 110(27), 11039–11043. https://doi.org/10.1073/pnas.1305618110 DOI: https://doi.org/10.1073/pnas.1305618110
  4. Botha, A.M., Lacock, L., van Niekerk, C., Matsioloko, M.T., du Preez, F.B., Loots, S., Venter, E., Kunert, K.J., Cullis, C.A. (2006). Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘Tugela DN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep., 25, 41–54. https://doi.org/10.1007/s00299-005-0001-9 DOI: https://doi.org/10.1007/s00299-005-0001-9
  5. Burd, J.D., Elliott, N.C. (1996). Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol., 89(5), 1332–1337. https://doi.org/10.1093/jee/89.5.1332 DOI: https://doi.org/10.1093/jee/89.5.1332
  6. Česonienė, L., Daubaras, R., Vencloviene, J., Viškelis, P. (2010). Biochemical and agro-biological diversity of Viburnum opulus genotypes. Open Life Sci., 5(6), 864–871. https://doi.org/10.2478/s11535-010-0088-z DOI: https://doi.org/10.2478/s11535-010-0088-z
  7. Czerniewicz, P., Leszczyński, B., Chrzanowski, G., Sempruch, C., Sytykiewicz, H. (2011). Effects of host plant phenolics on spring migration of bird cherry-oat aphid (Rhopalosiphum padi L.). Allelopathy J., 27(2), 309–316.
  8. Deineka, V.I., Sorokopudov, V.N., Deineka, L.A., Shaposhnik, E.I., Kol’tsov, S.V. (2005). Anthocyanins from fruit of some plants of the Capriofoliaceae family. Chem. Nat. Compd., 41, 162–164. https://doi.org/10.1007/s10600-005-0102-2 DOI: https://doi.org/10.1007/s10600-005-0102-2
  9. Fajinmi, A.A., Odebode, C.A., Fajinmi, O.B. (2011). The effect of agro-ecological zones on the incidence and distribution of aphid vectors of pepper veinal mottle virus, on cultivated pepper (Capsicum annuum L.) in Nigeria. J. Cent. Eur. Agric., 12(3), 528–542. https://doi.org/10.5513/JCEA01/12.3.951 DOI: https://doi.org/10.5513/JCEA01/12.3.951
  10. Fanizza, G., Ricciardi, L., Bagnulo, C. (1991). Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica, 55, 27–32. https://doi.org/10.1007/BF00022556 DOI: https://doi.org/10.1007/BF00022556
  11. Goławska, S. (2007). Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J. Chem. Ecol., 33, 1598–1606. https://doi.org/10.1007/s10886-007-9333-y DOI: https://doi.org/10.1007/s10886-007-9333-y
  12. Goławska, S., Krzyżanowski, R., Łukasik, I. (2010). Relationship between aphid infestation and chlorophyll content in Fabaceae species. Acta Biol. Cracov. Bot., 52(2), 82–86. https://doi.org/10.2478/v10182-010-0026-4 DOI: https://doi.org/10.2478/v10182-010-0026-4
  13. Goławska, S., Łukasik, I., Leszczyński, B. (2008). Effect of alfalfa saponins and flavonoids on pea aphid. Entomol. Exp. Appl., 128(1), 147–153. https://doi.org/10.1111/j.1570-7458.2008.00709.x DOI: https://doi.org/10.1111/j.1570-7458.2008.00709.x
  14. Goławska, S., Łukasik, I., Wójcicka, A., Sytykiewicz, H. (2012). Relationship between saponin content in alfalfa and aphid development. Acta Biol. Cracov. Bot., 54(2), 1–8. https://doi.org/10.2478/v10182-012-0022-y DOI: https://doi.org/10.2478/v10182-012-0022-y
  15. Goławska, S., Leszczyński, B., Oleszek, W. (2006). Effect of low and high-saponin of alfalfa on pea aphid. J. Insect Physiol., 52(7), 737–743. https://doi.org/10.1016/j.jinsphys.2006.04.001 DOI: https://doi.org/10.1016/j.jinsphys.2006.04.001
  16. Gutsche, A.R., Heng-Moss, T.M., Higley, L.G., Sarath, G., Mornhinweg, D.W. (2009). Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko). Arthropod Plant Interact., 3, 233–240. https://doi.org/10.1007/s11829-009-9067-6 DOI: https://doi.org/10.1007/s11829-009-9067-6
  17. Haile, F.J., Higley, L.G., Ni, X., Quisenberry, S.S. (1999). Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury. Environ. Entomol., 28(5), 787–794. https://doi.org/10.1093/ee/28.5.787 DOI: https://doi.org/10.1093/ee/28.5.787
  18. Heng-Moss, T.M., Ni, X., Macedo, T., Markwell, J.P., Baxendale, F.P., Quisenberry, S.S., Tolmay, V. (2003). Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Entomol., 96(2), 475–481. https://doi.org/10.1093/jee/96.2.475 DOI: https://doi.org/10.1093/jee/96.2.475
  19. IBM Corp. (2012). IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.
  20. Janave, M.T. (1997). Enzymatic degradation of chlorophyll in cavendish bananas: In vitro evidence for two independent degradative pathways. Plant Physiol. Biochem., 35, 837–846.
  21. Kafel, A., Nadgórska-Socha, A., Gospodarek, J., Babczyńska, A., Skowronek, M., Kandziora, M., Rozpędek, K. (2010). The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci. Total Environ., 408(5), 1111–1119. https://doi.org/10.1016/j.scitotenv.2009.11.013 DOI: https://doi.org/10.1016/j.scitotenv.2009.11.013
  22. Kollmann, J., Grubb, P.J. (2002). Viburnum lantana L. and Viburnum opulus L. (V. lobatum Lam., Opulus vulgaris Borkh.). J. Ecol., 90(6), 1044–1070. https://doi.org/10.1046/j.1365-2745.2002.00724.x DOI: https://doi.org/10.1046/j.1365-2745.2002.00724.x
  23. Konarska, A., Domaciuk, M. (2017). Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma, 255, 25–41. https://doi.org/10.1007/s00709-017-1130-z DOI: https://doi.org/10.1007/s00709-017-1130-z
  24. Lawson, T., Craigon, J., Tulloch, A.-M., Black, C.R., Colls, J.J., Landon, G. (2001). Photosynthetic responses to elevated CO2 and ozone in field-grown potato (Solanum tuberosum). J. Plant Physiol., 15(3), 309–323. https://doi.org/10.1078/0176-1617-00105 DOI: https://doi.org/10.1078/0176-1617-00105
  25. Li, W., Hydamaka, A.W., Lowry, L., Beta, T. (2009). Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent. Eur. J. Biol., 4(4), 499–506. https://doi.org/10.2478/s11535-009-0041-1 DOI: https://doi.org/10.2478/s11535-009-0041-1
  26. Łukasik, I., Goławska, S., Wójcicka, A. (2012). Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Pol. J. Environ. Stud., 21(6), 1937–1941.
  27. Macedo, T.B., Bastos, C.S., Higley, L.G., Ostlie, K.R., Madhavan, S. (2003). Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury. J. Econ. Entomol., 96(1), 188–193. https://doi.org/10.1093/jee/96.1.188 DOI: https://doi.org/10.1093/jee/96.1.188
  28. Mandal, M., Mukherji, S. (2000). Changes in chlorophyll contents, chlorophyllase activity, Hill reaction photosynthetic CO2 uptake, sugar and starch content in five dicotyledonous plants exposed to automobile exhaust pollution. J. Environ. Biol., 21(1), 37–41.
  29. Morgham, A.T., Richardson, P.E., Campbell, R.K., Burd, J.D., Eikenbary, R.D., Sumner, L.C. (1994). Ultrastructural responses of resistant and susceptible wheat to infestation by greenbug biotype E (Homoptera: Aphididae). Ann. Entomol. Soc., 87(6), 908–917. https://doi.org/10.1093/aesa/87.6.908 DOI: https://doi.org/10.1093/aesa/87.6.908
  30. Nebreda, M., Moreno, A., Pérez, N., Palacios, I., Seco-Fernández, V., Fereres, A. (2004). Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Res., 100(1), 83–88. https://doi.org/10.1016/j.virusres.2003.12.016 DOI: https://doi.org/10.1016/j.virusres.2003.12.016
  31. Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Higley, L., Baxendale, F., Sarath, G., Klucas, R. (2002). Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomol. Exp. Appl., 105(1), 43–53. https://doi.org/10.1046/j.1570-7458.2002.01031.x DOI: https://doi.org/10.1046/j.1570-7458.2002.01031.x
  32. Ni, X., Quisenberry, S.S., Markwell, J., Heng-Moss, T., Higley, L., Baxendale, F,. Sarath, G., Klucas, R. (2001). In vitro enzymatic chlorophyll catabolism in wheat elicited by cereal aphid feeding. Entomol. Exp. Appl., 101(2), 159–166. https://doi.org/10.1046/j.1570-7458.2001.00900.x DOI: https://doi.org/10.1046/j.1570-7458.2001.00900.x
  33. Osbourn, A.E. (2003). Molecules of interest, saponins in cereals. Phytochemistry, 62(1), 1–4. https://doi.org/10.1016/S0031-9422(02)00393-X DOI: https://doi.org/10.1016/S0031-9422(02)00393-X
  34. Oxborough, K. (2004). Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J. Exp. Bot., 55(400), 1195– 1205. https://doi.org/10.1093/jxb/erh145 DOI: https://doi.org/10.1093/jxb/erh145
  35. Rao, S.A., Carolan, J.C., Wilkinson, T.L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One, 8(2), e57413. https://doi.org/10.1371/journal.pone.0057413 DOI: https://doi.org/10.1371/journal.pone.0057413
  36. Riedell, W.E., Blackmer, T.M. (1999). Leaf reflectance spectra of cereal aphid damaged wheat. Crop Sci., 39(6), 1835–1840. https://doi.org/10.2135/cropsci1999.3961835x DOI: https://doi.org/10.2135/cropsci1999.3961835x
  37. Samsone, I., Andersone, U., Vikmane, M., Ieviņa, B., Pakarna, G., Ievinsh, G. (2007). Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a chlorophyll meter. Acta Univ. Latv. Biol., 723, 145–154.
  38. Schröder, M.L., Glinwood, R., Ignell, R., Krüger, K. (2017). The role of visual and olfactory plant cues in aphid behaviour and the development of non-persistent virus management strategies. Arthropod Plant Interact., 11, 1–13. https://doi.org/10.1007/s11829-016-9463-7 DOI: https://doi.org/10.1007/s11829-016-9463-7
  39. Sprawka, I., Goławska, S., Czerniewicz, P., Sytykiewicz, H. (2011). Insecticidal action of phytohemagglutinin (PHA) against the grain aphid, Sitobion avenae. Pestic. Bioch. Physiol., 100(1), 64–69. https://doi.org/10.1016/j.pestbp.2011.02.006 DOI: https://doi.org/10.1016/j.pestbp.2011.02.006
  40. Sprawka, I., Goławska, S., Goławski, A., Czerniewicz, P., Sytykiewicz, H. (2012). Antimetabolic effect of phytohemagglutinin to the grain aphid Sitobion avenae Fabricius. Acta Biol. Hung., 63(3), 342–353. https://doi.org/10.1556/abiol.63.2012.3.4 DOI: https://doi.org/10.1556/ABiol.63.2012.3.4
  41. Sprawka, I., Goławska, S., Parzych, T., Goławski, A., Czerniewicz, P., Sytykiewicz, H. (2013). Induction of apoptosis in the grain aphid Sitobion avenae (Hemiptera:Aphididae) under the influence of phytohaemagglutinin PHA. Appl. Entomol. Zool., 48, 525–542. https://doi.org/10.1007/s13355-013-0214-2 DOI: https://doi.org/10.1007/s13355-013-0214-2
  42. Sytykiewicz, H., Czerniewicz, P., Sprawka, I., Goławska, S., Chrzanowski, G., Leszczyński, B. (2011a). Induced proteolysis within the bird cherry leaves evoked by Rhopalosiphum padi L. (Hemiptera, Aphidoidea). Acta Biol. Hung., 62(3), 316–327. https://doi.org/10.1556/abiol.62.2011.3.10 DOI: https://doi.org/10.1556/ABiol.62.2011.3.10
  43. Sytykiewicz, H., Czerniewicz, P., Sprawka, I., Krzyżanowski, R. (2013). Chlorophyll content of aphid-infested seedlings leaves of fifteen maize genotypes. Acta Biol. Cracov. Bot., 55(2), 51–60. https://doi.org/10.2478/abcsb-2013-0023 DOI: https://doi.org/10.2478/abcsb-2013-0023
  44. Sytykiewicz, H., Goławska, S., Chrzanowski, G. (2011b). Effect of the bird cherry-oat aphid, Rhopalosiphum padi L. feeding on phytochemical responses within the bird cherry. Pol. J. Ecol., 59(2), 329–338.
  45. Tomassini, L., Brkic, D., Foddai, S., Nicoletti, M. (1997). Iridoid glucosides from Viburnum rhytidophyllum. Phytochemistry, 44, 751–753. https://doi.org/10.1016/S0031-9422(96)00600-0 DOI: https://doi.org/10.1016/S0031-9422(96)00600-0
  46. Wang, T., Quisenberry, S.S., Ni, X., Tolmay, V. (2004). Enzymatic chlorophyll degradation in wheat near-isogenic lines elicited by cereal aphid (Homoptera: Aphididae) feeding. J. Econ. Entomol., 97(2), 661–667. https://doi.org/10.1093/jee/97.2.661 DOI: https://doi.org/10.1093/jee/97.2.661
  47. Webster, B., Bruce, T., Pickett, J., Hardie, J. (2010). Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav., 79(2), 451–457. https://doi.org/10.1016/j.anbehav.2009.11.028 DOI: https://doi.org/10.1016/j.anbehav.2009.11.028
  48. Yilmaz, N., Nuran, Y., Misir, G., Çoskunçelebi, K., Karaoglu, S., Yaylı, N. (2008). Chemical composition and antimicrobial activities of the essential oils of Viburnum opulus, Viburnum lantana and Viburnum orientala. Asian J. Chem., 20(5), 3324–3330.
  49. Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T., Sampson, P.H. (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Qual., 31(5), 1433–1441. https://doi.org/10.2134/jeq2002.1433 DOI: https://doi.org/10.2134/jeq2002.1433
  50. Zvereva, E.L., Lanta, V., Kozlov, M.V. (2010). Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia, 163, 949–960. https://doi.org/10.1007/s00442-010-1633-1 DOI: https://doi.org/10.1007/s00442-010-1633-1
  51. Zytynska, S.E., Mayer, S.T., Sturm, S., Ullmann, W., Mehrparvar, M., Weisser, W.W. (2016). Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia, 180, 735–747. https://doi.org/10.1007/s00442-015-3488-y DOI: https://doi.org/10.1007/s00442-015-3488-y

Downloads

Download data is not yet available.

Similar Articles

<< < 76 77 78 79 80 81 82 83 84 85 > >> 

You may also start an advanced similarity search for this article.