Skip to main navigation menu Skip to main content Skip to site footer

Vol. 14 No. 1-2 (2015)

Artykuły

MODELING TOMATO SEED GERMINATION KINETICS WITH GOMPERTZ EQUATION

Submitted: July 1, 2020
Published: 2020-07-01

Abstract

The aim of the study was to evaluate the applicability of the Gompertz equation to describe the process of germination of tomato seeds (Lycopersicon esculentum cv. Promyk). Germination tests were carried out at five temperatures (15°C, 20°C, 25°C, 30°C and 35°C) under laboratory conditions. In all cases an excellent fit of the model equation to the experimental data was obtained, the worst fit (R2 = 0.997) was achieved for seeds germinated at 35°C, for all other cases R2 reached 0,999. Analysis of the parameters of Gompertz equation allowed for a detailed evaluation of kinetics of tomato seed germination.

References

  1. Benjamin, L.R. (1982). Some effect of different times of seedling emergence, population density and seed size on root size variation in carrot populations. J. Agricult. Sci., 98, 537–545.
  2. Berry, G.J., Cawood, R.J., Flood, R.G. (1988). Curve fitting of germination data using the Rich-ards function. Plant Cell Environ., 11, 183–188.
  3. Fellner, M., Sawhney, V.K. (2001). Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low-temperature stresses. Theoret. Appl. Gen., 102, 215–221.
  4. Finch-Savage, W.E., Phelps, K. (1993). Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. J. Exp. Bot., 44, 407–414.
  5. Gładyszewska, B. (1998). Ocena wpływu przedsiewnej laserowej biostymulacji nasion pomidorów na proces ich kiełkowania. Wydz. Techniki Rolniczej. AR w Lublinie (rozpr. dokt.).
  6. Hageseth, G.T., Joyner, R.D. (1975). Kinetics and thermodynamics of isothermal seed germination. J. Theor. Biol., 53, 51–65.
  7. Hsu, F.H., Nelson, C.J., Chow, W.S. (1984). A mathematical model to utilize the logistic function in germination and seedling growth. J. Exp. Bot., 35, 1629–1640.
  8. Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D. (2013). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Res., 53, 89–101.
  9. Shafii, B., Price, W.J., Swensen, J.B., Murray, G.A. (1991). Nonlinear estimation of growth curve models for germination data analysis. The Third Conference On Applied Statistics In Agricul-ture. Kansas State University, Manhattan, KS, 19–42.
  10. Shafii, B., Price, W.J. (2001). Estimation of cardinal temperatures in germination data analysis. J. Agricult. Biol. Environ. Stat., 6, 356–366.
  11. O’Neill, M.E., Thomson, P.C., Jacobs, B.C., Brain, P., Butler, R.C., Turner, H., Mitakda, B. (2004). Fitting and comparing seed germination models with a focus on the inverse normal distribution Austral. New Zealand J. Statist., 46, 349–366.
  12. Odabas, M.S., Mut, Z. (2007). Modeling the effect of temperature on percentage and duration of seed germination grain legumes and cereals Am. J. Physiol., 2, 303–310.
  13. Ranal, M.A., de Santana, D.G. (2006). How and why to measure the germination process? Rev. Brasil. Bot., 29, 1–11.
  14. Tjørve, E., Tjørve, K.M.C. (2010). A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. J. Theor. Biol., 267, 417–425.
  15. van de Venter, A. (2001). What is seed vigour? J. New Seeds, 2(3), 67–72.
  16. Windsor, C.P. (1932). The Gompertz curve as a growth curve. Proc. Nat. Acad. Sci., 18, 1–8.

Downloads

Download data is not yet available.