Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Skuteczność zastosowania substancji biologicznie czynnych w łagodzeniu stresu wywołanego przez fluorek sodu na podstawie parametrów morfologicznych, biochemicznych i fizjologicznych u pszenicy jarej (Triticum aestivum L.) odmiany Bryza

BEATA SMOLIK

Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. Słowackiego 17, 71-434 Szczecin

JUSTYNA PELC

Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. Słowackiego 17, 71-434 Szczecin


Abstrakt

Rośliny w trakcie swojego wzrostu i rozwoju stale są narażone na wpływ czynników stresowych. Jednym z tych czynników jest zanieczyszczenie środowiska związkami fluoru. Fluor jest pierwiastkiem wysoce toksycznym i dotychczas nie wykazano jego pozytywnego wpływu na rośliny. Celem pracy była ocena stopnia łagodzenia stresu wywołanego przez 10 mM NaF poprzez zastosowanie różnych substancji biologicznie czynnych (witamina C, glutation, witamina PP, witamina E, kwas salicylowy), na podstawie pomiarów cech morfologicznych (długość korzenia, długość siewki, świeża masa), biochemicznych (MDA, prolina) i fizjologicznych (chlorofil całkowity, karotenoidy) w 10-dniowych siewkach pszenicy jarej odmiany Bryza w warunkach laboratoryjnych. Dodatek NaF do podłoża wykazał hamujący wpływ na wzrost i świeżą masę roślin oraz podwyższał parametry biochemiczne będące wskaźnikiem stresu oksydacyjnego. Spośród zastosowanych substancji kwas askorbinowy (witamina C), α-tokoferol (witamina E) i kwas salicylowy w największym stopniu łagodziły toksyczne oddziaływanie fluorku na siewki pszenicy.

Słowa kluczowe:

fluor, substancje biologicznie czynne, parametry stresu oksydacyjnego

Abdelhamid M.T., Sadak M.SH., Schmidhalter U., El-Saady A.K.M., 2013. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biol. Colomb. 18, 499–510.

Arnon D.J., Allen M.B., Halley F. 1956. Photosynthesis by isolated chloroplasts. Biochim. Biophys. Acta. 20, 449–461.

Athar H.R., Khan A., Ashraf M., 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 63, 224–231.

Azooz M.M., Alzahrani A.M., Youssef M.M., 2013. The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Aust. J. Crop Sci. 7, 2091–2100.

Baghizadeh A., Hajmohammadrezaei M., 2011. Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L. ) germination and seedling growth. J. Stress Physiol. Biochem. 1(7), 55–65.

Barbero P., Beltrami M., Baudo R., Rossi D., 2001. Assessment of lake orta sediments phytotoxicity after limiting treatment. J. Limnol. 60(2), 269–276.

Bates L.S., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207.

Bhargava D., Bhardwaj N., 2010. Effect of sodium fluoride on seed germination and seedling growth of Triticum aestivum Var. Raj. 4083. J. Phytol. 2(4), 41–43.

Bybordi A., 2012. Effect of ascorbic acid and silicium on photosynthesis, antioxidant en-zyme activity, and fatty acid contents in canola exposure to salt stress. J. Integr. Agr. 11(10), 1610–1620.

Cai Y.,Cao F., Wei K., Zhang G., Wu F., 2010. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J. Hazard. Mater. 192(15), 1056–1066.

Chen Z., Zheng Z., Huang J., Lai Z., Fan B., 2009. Biosynthesis of salicylic acid in plants. Plants Signal. Behav. 4, 493–496.

Davey M.W., Montagu M.V., Inze D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J.J., Favell D., Fletcher J., 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860.

Dixon D.P., Cummins I., Cole D.J., Edwards R., 1998. Glutathione-mediated detoxifica-tion systems in plants. Curr. Biol. 1, 258–266.

Dolatabadian A., Jouneghani S.R., 2009. Impact of exogenous ascorbic acid on antioxi-dant activity and some physiological traits of common bean to salinity stress. Not. Bot. Hort. Agrobot. Cluj. 37(2), 165–172.

Ebrahim M.K., 2005. Amelioration of sucrose- metabolism and yield changes, in storage roots of NaCl-stressed sugarbeet, by ascorbic acid. Agrochimica 49(3–4), 93–103.

Elloumi N., Abdallah F.B, Mezghani I., Rhouma A., Boukhrisb M., 2005. Effect of fluoride on almond seedlings in culture solution. Fluoride 38(3), 193–198.

Eraslan F., Inal A., Gunes A., Alpaslan M., 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. 113(2), 120–128.

Farooq M., Irfan M., Aziz T., Ahmad T., Cheema S.A., 2012. Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop Sci. 199(1), 12–22.

Farooq M., Wahid A., Kobayashi N., Fujita D., Bas S. M. A., 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Develop. 29, 185–212.

Gadi B.R., Pooja V., Ram A., 2012. Influence of NaF on seed germination, membrane stability and some biochemicals content in Vigna seedlings. J. Chem. Bio. Phys. Sci. Sec. B. 2(3), 1371–1378.

Gautam R., Bhardwaj N., Saini Y., 2010. Fluoride accumulation by vegetables and crops grown in Nawa Tehsil of Nagaur District (Rajasthan, India). J. Phytol. 2(2), 80–85.

Gramowska H., Siepak J., 2002. Wpływ poziomu fluorków na reakcje liści i igieł drzew miasta Poznania i okolic. Rocz. Ochr. Śr. 4, 457–475.

Guo, Z., Tan H., Zhu Z., Lu S., Zhou B., 2005. Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol. Biochem. 43(10), 955–962.

Gupta S., Banerjee S., Mondal S., 2009. Phytotoxicity of fluoride in the germination of paddy (Oryza Sativa) and its effect on the physiology and biochemistry of germinated seedlings. Fluoride 42(2), 142–146.

Hell R., 1997. Molecular physiology of plant sulfur metabolism. Planta 202, 138–148.

Jazi S.B., Oregani K.E., 2014. Impact of salicylic acid on the growth and photosynthetic pigment of canola (Brassica napus L.) under lead stress. Int. J. Biosci. 4(10), 290–297.

Kadioglu A., Saruhan N., Sağlam A.S.,Tuba T., 2010. Acet Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. J. Plant Growth Regul. 64(1), 27–37.

Kartick C., Pal, Mondal N.K., Bhaumik R., Banerjee A., Datta J.K., 2012. Incorporation of fluoride in vegetation and associated biochemical changes due to fluoride contamination in water and soil: a comparative field study. AES 6, 123–139.

Kostopolou Z., Therios I., Roumeliotis E., Kanellis A. K., Molassiotis A., 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 86, 155–165.

Kumar S., Singh R., Nayyar H., 2012. α- Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J. Plant Growth Regul. 32(2), 307–314.

Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlo-rophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592.

Miura K., Tada Y., 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5, 4.

Moghadam H.R.T., 2016. Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat. Pesqui. Agropecu. Trop.. 46(1), 9–18.

Mohanpuria P., Rana N.K.,Yadav S.K., 2007. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicol. 22(4), 368–374.

Naser Alavi S.M., Arvin M.J., Kalantari K.M., 2014. Salicylic acid and nitric oxide al-leviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J. Plant Interac. 9, 683–688.

Noctor G., Mhamdi A., Chaouche S., Han Y., Neukermans J., Marquez-Garcia B., 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35(2), 454–484.

Schmidt M., Horstmanna S., De Collib L., Danaherb M., Speerc K., Zanninia E., Arendta E.K., 2016. Impact of fungal contamination of wheat on grain quality criteria. J. Cereal Sci. 69, 95–103.

Shalata A., Neumann P.M., 2001. Exogenous ascorbic acid (vitamin C) increase resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot. 52(364), 2207–2211.

Singh G.P., Chaudhary H.B., 2006. Selection parameters and yield enhancement of wheat (Triticum aestivum L.) under different moisture stress condition. Asian J. Plant Sci. 5(5), 894–898.

Smirnoff N., 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3(3), 229–235.

Smirnoff N., 2005. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, 53–86.

Smirnoff N., Conklin P., Loewus F.A., 2001. Biosynthesis of ascorbic acid in plants: a renaissance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 437–440.

Smirnoff N., Wheeler G.L., 2008. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 35(4), 219–314.

Son J.A., Narayanankutty D.P., Roh K.S., 2014. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro. Saudi J. Biol. Sci. 21, 89–97.

Srivastava A.K., Bhargava P., Rai L.C., 2005. Salinity and copper-induced oxidative da-mage and changes in antioxidative defense system of Anabaena doliolum. World J. Mi-crobiol. Biotechnol. 22, 1291–1298.

Sudhakar C., Lakshim A., Giridarakumar S., 2001. Changes in the antioxidant enzyme ef-ficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161, 613–619.

Sudhakar P., Prabhakar P., Bhiravamurthy P.V., 2008. Effects of fluoride on early root and shoot growth of typical crop plants of India. Fluoride 41(1), 57–60.

Venkatesh J., Park S., 2014. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot. Stud. 55, 38.

Wędzisz A., 1994. Fluor – środowisko – żywność. Bromat. Chem. Toksykol. 27, 347–352.

Zhang J., Kirkham M.B., 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist. 132(3), 361–373.

Pobierz

Opublikowane
19-12-2017



BEATA SMOLIK 
Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. Słowackiego 17, 71-434 Szczecin
JUSTYNA PELC 
Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, ul. Słowackiego 17, 71-434 Szczecin



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.