Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Bioróżnorodność zbiorowiska chwastów w kukurydzy, łubinie wąskolistnym i owsie w zależności od systemu uprawy i regulacji zachwaszczenia

Aleksandra Głowacka

University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Sciences, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0003-2835-7426

Ewelina Flis-Olszewska

University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Sciences, Akademicka 15, 20-950 Lublin, Poland
https://orcid.org/0000-0002-4796-5462


Abstrakt

The aim of the experiment was to assess the effect of cropping system and as well as various methods of weed control on the biodiversity of the weed community of dent maize, narrow-leaved lupine and spring oat. The data used in the study came from a three year field experiment carried out at the Experimental Station in south-eastern Poland (50°42'N, 23°16'E). The following factors were studied: 1. Cropping system – sole cropping and strip intercropping; 2. Weed control – mechanical and chemical. Changes in the diversity of the segetal flora are analysed using the species richness index (S), the Shannon-Wiener diversity index (H’), the Margalef index (R), the Simpson dominance index (D) and Pielou’s evenness index (J’). The use of chemical weed control increased the diversity of the weed community in all species tested compared to mechanical weed regulation. Chemical weed regulation significantly decreased the value of Simpson dominance index due to the limitation of the occurrence of dominant weed species. Strip intercropping increased weed biodiversity, however, the influence of cropping systems depended on the crop species and the weed control
method used.

Słowa kluczowe:

biodiversity, intercropping, Shannon-Wiener diversity index, Margalef index, Simpson dominance index, Pielou’s evenness index

Amala U., Shivalingaswamy T.M., 2018. Effect of intercrops and border crops on the diversity of parasitoids and predators in agroecosystem. Egypt. J. Biol. PestCo. 28, 11. https://doi.org/10.1186/s41938-017-0015-y DOI: https://doi.org/10.1186/s41938-017-0015-y

Baumann D.T., Kropff M.J., Bastiaans L., 2000. Intercropping leeks to suppress weeds. Weed Res. 40, 361–376. https://doi.org/10.1046/j.1365-3180.2000.00197.x DOI: https://doi.org/10.1046/j.1365-3180.2000.00197.x

Benton T.G., Vickery J.A., Wilson J.D., 2003. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 DOI: https://doi.org/10.1016/S0169-5347(03)00011-9

Booth B.D., Swanton C.J., 2002. Assembly theory applied to weed communities. Weed Sci. 50, 2–13. https://doi.org/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2

Brooker R.W., 2006. Plant–plant interactions and environmental change. New Phytol. 171, 271–284. https://doi.org/10.1111/j.1469-8137.2006.01752.x DOI: https://doi.org/10.1111/j.1469-8137.2006.01752.x

Chateil C., Goldringer I., Tarallo L., Kerbiriou Ch., Le Viol I., Ponge J.F., Salmon S., Gachet S., Porcheret E., 2013. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosys. Environ. 171, 25–32. https://doi.org/10.1016/j.agee.2013.03.004 DOI: https://doi.org/10.1016/j.agee.2013.03.004

Chen X., Wang Z.Q., Tang J.J., 2000. The ecological functions of weed biodiversity in an agroecosystem. Chin. J. Ecol. 19, 50–52.

Derksen D.A., Lafond G.P., Thomas A.G., Loeppky H.A., Swanton C.J., 1993. Impact of agronomic practices on weed communities: tillage systems. Weed Sci. 49, 409–417. https://www.jstor.org/stable/4045367 DOI: https://doi.org/10.1017/S0043174500052127

Edesi L., Järvan M., Adamson A., Lauringson E., Kuht J., 2012. Weed species diversity and community composition in conventional and organic farming: A five-year experiment. Zemdirbyste 99, 339–346. https://doi.org/10.13080/z-a.2012.99.043

Feledyn-Szewczyk B., 2008. The changes of biodiversity of weed flora in organic system in the years 1996–2007. J. Res. Appl. Agric. Eng. 53, 63–68.

de la Fuente E.B., Suárez S.A., Lenardis A.E., Poggio S.L., 2012. Intercropping sunflower and soybean in intensive farming systems: Evaluating yield advantage and effect on weed and insect assemblages. NJAS – Wagen. J. Life Sci. 70–71, 47–52. https://doi.org/10.1016/j.njas.2014.05.002 DOI: https://doi.org/10.1016/j.njas.2014.05.002

Głowacka A., 2013. The influence of strip cropping on the state and degree of weed infestation in dent maize (Zea mays L.), common bean (Phaseolus vulgaris L.) and spring barley (Hordeum vulgare L.). Acta Agrobot. 66, 135–148. https://doi.org/10.5586/aa.2013.015 DOI: https://doi.org/10.5586/aa.2013.015

Głowacka A., 2014. The effects of strip cropping and weed control methods on yields of dent maize, narrow-leafed lupin and oats. Int. J. Plant Prod. 8, 505–529.

Haliniarz M., Chojnacka S., Rusecki H., Gawęda D., Łukasz J., 2018. Wpływ łącznego stosowania herbicydu i antywylegaczy oraz zróżnicowanego nawożenia mineralnego na zachwaszczenie łanu pszenicy jarej. Agron. Sci. 73, 111–123. https://doi.org/10.24326/asx.2018.4.10 DOI: https://doi.org/10.24326/asx.2018.4.10

Jastrzębska M., Jastrzębski W.P., Hołdyński Cz., Kostrzewska M.K., 2013. Weed species diversity in organic and integrated farming systems. Acta Agrobot. 66, 113–124. https://doi.org/10.5586/aa.2013.045 DOI: https://doi.org/10.5586/aa.2013.045

Jastrzębska M., Kostrzewska M.K., Marks M., Jastrzębski W.P., Treder K., Makowski P., 2019. Crop rotation compared with continuous rye cropping for weed biodiversity and rye yield. A case study of a long-term experiment in Poland. Agronomy 9, 644. https://doi.org/10.3390/agronomy9100644 DOI: https://doi.org/10.3390/agronomy9100644

Jastrzębska M., Wanic M., Kostrzewska M.K., 2010. Influence of crop rotation and meteorological conditions on biodiversity of weed communities in spring barley (Hordeum vulgare L.). Acta Agrobot. 63, 221–233. https://doi.org/10.5586/aa.2010.025 DOI: https://doi.org/10.5586/aa.2010.025

Jastrzębska M., Wanic M., Kostrzewska M.K., Treder K., Nowicki J., 2012. An attempt to use functional diversity indices for the assessment of weed communities. Acta Agrobot. 65, 129–140. https://doi.org/10.5586/aa.2012.051 DOI: https://doi.org/10.5586/aa.2012.051

Jurik T.W., Van K., 2004. Microenvironment of corn-soybean-oat strip intercrop system. Field Crops Res. 90, 335–349. https://doi.org/10.1016/j.fcr.2004.04.002 DOI: https://doi.org/10.1016/j.fcr.2004.04.002

Jurko A., 1986. Plant communities and some questions of their taxonomical diversity. Ekologia 5, 3–32.

Kwiatkowska A.J., Symonides E., 1985. Statistical analysis of the phytocoenose homogeneity. Part. I. Distribution of the total species diversity and evenness indices as a homogeneity measure. Acta Soc. Bot. Pol. 54, 449–463. https://doi.org/10.5586/asbp.1985.039 DOI: https://doi.org/10.5586/asbp.1985.039

Leps J., Brown V.K., Len T.A.D., Gormsen D., Hedlund K., Kailova J., Korthals G.W., Mortimer S.R., Rodriguez-Barrueco C., Roy J., Regina I.S., van Dijk C., van der Putten W.H., 2001. Separating the chance effect from other diversity effects in the functioning of plant communities. Oikos 92, 123–134. https://doi.org/10.1034/j.1600-0706.2001.920115.x DOI: https://doi.org/10.1034/j.1600-0706.2001.920115.x

Liebman M., Davis A.S., 2000. Integration of soil, crop and weed management in low-input farming systems. Weed Res. 40, 27–47. https://doi.org/10.1046/j.1365-3180.2000.00164.x DOI: https://doi.org/10.1046/j.1365-3180.2000.00164.x

Liebman M., Dyck E., 1993. Crop rotation and intercropping strategies for weed management. Ecol. App. 3, 92–122. https://doi.org/10.2307/1941795 DOI: https://doi.org/10.2307/1941795

Lin B.B., 2011. Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4 DOI: https://doi.org/10.1525/bio.2011.61.3.4

Lisek J., Sas-Paszt L., 2015 Biodiversity of weed communities in organic and conventional orchards. J. Hortic. Res. 23, 39–48. https://doi.org/10.2478/johr-2015-0006 DOI: https://doi.org/10.2478/johr-2015-0006

Lithourgidis A.S., Dordas C.A., Damalas C.A., Vlachostergios D.N., 2011. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 59, 396–410.

Macfadyen S., Bohan D., 2010. Crop domestication and the disruption of species interactions. Basic Appl. Ecol. 11, 116–125. https://doi.org/10.1016/j.baae.2009.11.008 DOI: https://doi.org/10.1016/j.baae.2009.11.008

Malézieux E., Crozat Y., Dupraz C., Laurans M., Makowski D., Ozier-Lafontaine H., Rapidel B., de Tourdonnet S., Valantin-Morison M., 2009. Mixing plant species in cropping systems: concepts, tools and models. A review. Agron. Sustain. Dev. 29, 43–62. https://doi.org/10.1051/agro:2007057 DOI: https://doi.org/10.1051/agro:2007057

Malicki L., Nawrocki S., Pawłowski F., 1986. Ogólna uprawa roli i roślin [General cultivation of soil and plants]. Wyd. AR w Lublinie, 132–133 [in Polish].

Marshall E.J.P., 2001. Biodiversity, herbicides and non-target plants. Mat. Konf. Brighton Crop Protection Conference: Weeds, Brighton, UK, 12–15.11.2001, 855–862.

Marshall E.J.P., Brown V.K., Boatman N.D., Lutman J.W., Squire G.R., Ward L.K., 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res. 43, 77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x DOI: https://doi.org/10.1046/j.1365-3180.2003.00326.x

Mayerová M., Mikulka J., Soukup J., 2018. Effects of selective herbicide treatment on weed community in cereal crop rotation. Plant Soil Environ. 64, 413–420. https://doi.org/10.17221/289/2018-PSE DOI: https://doi.org/10.17221/289/2018-PSE

Mézière D., Colbach N., Dessaint F., Granger S., 2015. Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. Eur. J. Agron. 68, 22–37. https://doi.org/10.1016/j.eja.2015.04.004 DOI: https://doi.org/10.1016/j.eja.2015.04.004

Nkoa R., Owen M.D.K., Swanton C.J., 2015 Weed abundance, distribution, diversity, and community analyses. Weed Sci. Spec. Issue, 64–90. https://doi.org/10.1614/WS-D-13-00075.1 DOI: https://doi.org/10.1614/WS-D-13-00075.1

Oerke E., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/10.1017/S0021859605005708 DOI: https://doi.org/10.1017/S0021859605005708

Otto S., Vasileiadis V.P., Masin R., Zanin G., 2012. Evaluating weed diversity with indices of varying complexity in north-eastern Italy. Weed Res. 52, 373–382. https://doi.org/10.1111/j.1365-3180.2012.00921.x DOI: https://doi.org/10.1111/j.1365-3180.2012.00921.x

Pakeman R.J., Brooker R.W., Karley A.J., Newton A.C., Mitchell C., Hewison R.L., Pollenus J., Guy D.C., Schöb C., 2020. Increased crop diversity reduces the functional space available for weeds. Weed Res. 60, 121–131. https://doi.org/10.1111/wre.12393 DOI: https://doi.org/10.1111/wre.12393

Pawlonka Z., Rymuza K., Starczewski K., Bombik A., 2015. Biodiversity of segetal weed community in continuous potato cultivated with metribuzin-based weed control. J. Plant Protect. Res. 55, 52–57. https://doi.org/10.1515/jppr-2015-0008 DOI: https://doi.org/10.1515/jppr-2015-0008

Poggio S.L., 2005. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric. Ecosys. Environ. 109, 48–58. https://doi.org/10.1016/j.agee.2005.02.019 DOI: https://doi.org/10.1016/j.agee.2005.02.019

Rzymowska Z., Jakubiak K., Korulczyk M., 2019. Alien invasive as well as rare and endangered species in the agrocenoses of the Ułęż commune. Agron. Sci. 74, 63–74. https://doi.org/10.24326/as.2019.1.6 DOI: https://doi.org/10.24326/as.2019.1.6

Sharma R.Ch., Banik P., 2013. Baby corn-legumes intercropping system: II Weed Dynamics and Community Structure. NJAS – Wagen. J. Life Sci. 67, 11–18. https://doi.org/10.1016/j.njas.2013.08.001 DOI: https://doi.org/10.1016/j.njas.2013.08.001

Sienkiewicz J., 2010. Koncepcje bioróżnorodności – ich wymiary i miary w świetle literatury. Ochr. Środ. Zas. Nat. 45, 7–29.

Simpson E.H., 1949. Measurement of diversity. Nature 168, 668.

Sobiech Ł., Idziak R., Skrzypczak G., Szulc P., Grzanka M., 2018. Bioróżnorodność zachwaszczenia w uprawie kukurydzy na glebie płowej [Biodiversity of weed flora in maize on lessive soil]. Progr. Plant Protect. 58, 282–287 [in Polish]. https://doi.org/10.14199/ppp-2018-039 DOI: https://doi.org/10.14199/ppp-2018-039

Spellerberg I.F., Fedor P.J., 2003. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Global Ecol. Biogeogr. 12, 177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x DOI: https://doi.org/10.1046/j.1466-822X.2003.00015.x

Squire G.R., Rodger S., Wright G., 2000. Community-scale seedbank response to less intense rotation and reduced herbicide input at three sites. Ann. Appl. Biol. 136, 47–57. https://doi.org/10.1111/j.1744-7348.2000.tb00008.x DOI: https://doi.org/10.1111/j.1744-7348.2000.tb00008.x

Stupnicka-Rodzynkiewicz E., Stępnik K., Lepiarczyk A., 2004. Wpływ zmianowania, sposobu uprawy roli i herbicydów na bioróżnorodność zbiorowisk chwastów [Influence of the crop rotation, tillage method and herbicides on the biodiversity of weed communities]. Acta Sci. Pol., Agricultura 3, 235–245 [in Polish].

Takim F.O., 2012. Advantages of maize-cowpea intercropping over sole cropping through competition indices. J. Agric. Biodiver. Res. 1, 53–59.

Tang L., Cheng Ch., Wan K., Li R., Wang D., Tao Y., Pan Y., Xie Y., Chen F., 2014. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth. PLoS ONE 9, e84370. https://doi.org/10.1371/journal.pone.0084370 DOI: https://doi.org/10.1371/journal.pone.0084370

Zhang W., Ricketts T.H., Kremen C., Carney K., Swinton S.M., 2007. Ecosystem services and disservices to agriculture. Ecol Econ. 64(2), 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024 DOI: https://doi.org/10.1016/j.ecolecon.2007.02.024

Zuo S., Ma Y., Shinobu I., 2008. Ecological adaptation of weed biodiversity to the allelopathic rank of the stubble of different wheat genotypes in a maize field. Weed Biol. Manag. 8(3), 161–171. https://doi.org/10.1111/j.1445-6664.2008.00292.x DOI: https://doi.org/10.1111/j.1445-6664.2008.00292.x


Opublikowane
28-10-2022



Aleksandra Głowacka 
University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Sciences, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0003-2835-7426
Ewelina Flis-Olszewska 
University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Sciences, Akademicka 15, 20-950 Lublin, Poland https://orcid.org/0000-0002-4796-5462



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora