Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Zmiany zawartości D-chiro-inozytolu i jego α-D-galaktozydowych pochodnych podczas wegetacji i desykacji gryki zwyczajnej (Fagopyrum esculentum Moench)

Lesław Bernard Lahuta

Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
https://orcid.org/0000-0001-5999-1871

Joanna Szablińska-Piernik

Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
https://orcid.org/0000-0003-0265-940X

Ryszard J. Górecki

Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
https://orcid.org/0000-0002-6751-3340

Joanna Mitrus

2Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland
https://orcid.org/0000-0001-8000-5167

Marcin Horbowicz

Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
https://orcid.org/0000-0002-1789-4034


Abstrakt

Common buckwheat (Fagopyrum esculentum Moench) is the only crop that contains D-chiro-inositol (DCI) in significant contents in vegetative tissues and its α-D-galactosyl derivatives in seeds. Besides DCI, buckwheat tissues contain small contents of D-pinitol (PIN) and myo-inositol (MIN) and their α-D-galactosyl derivatives. D-chiro-inositol is a health-promoting cyclitol of increasing importance in the treatment of some human diseases. However, changes in DCI content in stems, leaves and maturing buckwheat seeds during plant vegetation and under desiccation were not known. The present study analyzed the concentration of cyclitols and their galactosides in the stems, leaves and seeds of plants harvested on 79th, 94th and 123th days after sowing (DAS) and after desiccation at ambient temperature (23° ±2°C). D-chiro-inositol content in stems and leaves increased with vegetation, while the opposite trend was found in developing and maturing seeds. In the seeds, the accumulation of mono-galactosyl DCI derivatives increased, but at the same time, the content of mono-galactosyl PIN and MIN derivatives decreased. The desiccation process drastically increased the content of di-galactosyl derivatives of DCI and MIN in the seeds. The obtained results suggest a protective role of DCI and MIN di-galactosides against desiccation stress in buckwheat tissues.

Słowa kluczowe:

common buckwheat, cyclitol galactosides, D-chiro-inositol, desiccation, myo-inositol, vegetation

Ahn C.H., Hossain M.A., Lee E., Kanth B.K., Park P.B., 2018. Increased salt and drought tolerance by D-pinitol production in transgenic Arabidopsis thaliana. Bioch. Bioph. Res. Comm. 504, 315–320. https://doi.org/10.1016/j.bbrc.2018.08.183 DOI: https://doi.org/10.1016/j.bbrc.2018.08.183

Antonowski T., Osowski A., Lahuta L., Górecki R., Rynkiewicz A., Wojtkiewicz J., 2019. Health-promoting properties of selected cyclitols for metabolic syndrome and diabetes. Nutrients 11, 2314. https://doi.org/10.3390/nu11102314 DOI: https://doi.org/10.3390/nu11102314

Bertrand A., Prévost D., Bigras F.J., Castonguay Y., 2007. Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sa-tiva). Ann. Bot. (London) 99, 275–284. https://doi.org/10.1093/aob/mcl254 DOI: https://doi.org/10.1093/aob/mcl254

Brenac P., Horbowicz M., Smith M.E., Obendorf R.L., 2013. Raffinose and stachyose accumulate in hypocotyls during drying of common buckwheat seedlings. Crop Sci. 53, 1615–1625. https://doi.org/10.2135/cropsci2012.12.0702 DOI: https://doi.org/10.2135/cropsci2012.12.0702

Caramelo J.J., Iusem N.D., 2009. When cells lose water: Lessons from biophysics and molecular biology. Prog. Biophys. Mol. Bio. 99, 1–6. https://doi.org/10.1016/j.pbiomolbio.2008.10.001 DOI: https://doi.org/10.1016/j.pbiomolbio.2008.10.001

Dumschott K., Dechorgnat J., Merchant A., 2019. Water deficit elicits a transcriptional response of genes governing D-pinitol biosynthesis in soybean (Glycine max). Int. J. Mol. Sci. 20, 2411. https://doi.org/10.3390/ijms20102411 DOI: https://doi.org/10.3390/ijms20102411

Dziadek K., Kopeć A., Pastucha E., Piatkowska E., Leszczyńska T., Pisulewska E., Witkowicz R., Francik R., 2016. Basic chemical composition and bioactive compounds content in selected cul-tivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 69, 1–8. https://doi.org/10.1016/j.jcs.2016.02.00 DOI: https://doi.org/10.1016/j.jcs.2016.02.004

Eveland A.L., Jackson D.P., 2012. Sugars, signaling, and plant development. J. Exp. Bot. 63, 3367–3377. https://doi.org/10.1093/jxb/err379 DOI: https://doi.org/10.1093/jxb/err379

Gambioli R., Forte G., Aragona C., Bevilacqua A., Bizzarri M., Unfer V., 2021. The use of D-chiro-inositol in clinical practice. Eur. Rev. Med. Pharmacol. Sci. 25, 438–446. https://doi.org/10.26355/eurrev_202101_24412

Giménez-Bastida J.A., Zieliński H., 2015. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 63, 7896−7913. https://doi.org/10.1021/acs.jafc.5b02498 DOI: https://doi.org/10.1021/acs.jafc.5b02498

Gomes C.I., Obendorf R.L., Horbowicz M., 2005. myo-Inositol, D-chiro-Inositol, and D-Pinitol synthesis, transport, and galactoside formation in soybean explants. Crop Sci. 45, 1312–1319. https://doi.org/10.2135/cropsci2004.0247 DOI: https://doi.org/10.2135/cropsci2004.0247

Gui W., Lemley B.A., Keresztes I., Condo A.M. Jr., Steadman K.J., Obendorf R.L., 2013. Purifica-tion and molecular structure of digalactosyl myo-inositol (DGMI), trigalactosyl myo-inositol (TGMI), and fagopyritol B3 from common buckwheat seeds by NMR. Carbohyd. Res. 380, 130–136. https://doi.org/10.1016/j.carres.2013.08.004 DOI: https://doi.org/10.1016/j.carres.2013.08.004

He J., Zhang Y.L., Wang L.P., Liu X.C., 2021. Impact of different stereoisomers of inositol on insulin sensitivity of gestational diabetes mellitus patients. World J. Clin. Cases. 9(3), 565–572. https://dx.doi.org/10.12998/wjcc.v9.i3.565 DOI: https://doi.org/10.12998/wjcc.v9.i3.565

Hornyák M., Dziurka M., Kula-Maximenko M., Pastuszak J., Szczerba A., Szklarczyk M., Płażek A., 2022. Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum esculentum Moench) in different controlled-environment production systems. Sci. Rep. 12, 257. https://doi.org/10.1038/s41598-021-04134-6 DOI: https://doi.org/10.1038/s41598-021-04134-6

Horbowicz M., Brenac P., Obendorf R.L., 1998. Fagopyritol B1, O--D-galactopyranosyl-(12)-

-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205, 1–11. https://doi.org/10.1007/s004250050290 DOI: https://doi.org/10.1007/s004250050290

Horbowicz M., Obendorf R.L., 2005. Fagopyritol accumulation and germination of buckwheat seeds matured at 15, 22, and 30°C. Crop Sci. 45, 1264–1270. https://doi.org/10.2135/crop-sci2004.0431 DOI: https://doi.org/10.2135/cropsci2004.0431

Horbowicz M., Wiczkowski W., Szawara-Nowak D., Sawicki T., Kosson R., Sytykiewicz H., 2015. The level of flavonoids and amines in de-etiolated and methyl jasmonate treated seedlings of common buckwheat. Phytochem. Lett. 13, 15–19. https://doi.org/10.1016/j.phytol.2015.05.011 DOI: https://doi.org/10.1016/j.phytol.2015.05.011

Huda M.N., Lu S., Jahan T., Ding M., Jha R., Zhang K., Zhang W., Georgiev M.I., Park S.U., Zhou M., 2020. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 335, 127653. https://doi.org/10.1016/j.foodchem.2020.127653 DOI: https://doi.org/10.1016/j.foodchem.2020.127653

Kreft I., Zhou M., Golob A., Germ M., Likar M., Dziedzic K., Luthar Z., 2020. Breeding buckwheat for nutritional quality. Breeding Sci. 70, 67–73. https://doi.org/10.1270/ jsbbs.19016 DOI: https://doi.org/10.1270/jsbbs.19016

Lahuta L., Goszczyńska J., 2010. Cyclitols in maturing grains of wheat, triticale and barley. Acta Soc. Bot. Pol. 79, 181–187. https://doi.org/10.5586/asbp.2010.023 DOI: https://doi.org/10.5586/asbp.2010.023

Lahuta L.B., Górecki R.J., 2010. Raffinose in seedlings of winter vetch (Vicia villosa Roth.) under osmotic stress and followed by recovery. Acta Physiol. Plant. 33, 725–733. https://doi.org/10.1007/s11738-010-0597-4 DOI: https://doi.org/10.1007/s11738-010-0597-4

Lahuta L., Święcicki W., Dzik T., Górecki R., Horbowicz M., 2010. Feeding stem-leaf-pod explants of pea (Pisum sativum L.) with D-chiro-inositol or D-pinitol modifies composition of alpha-D-galactosides in developing seeds. Seed Sci. Res. 20, 213–221. https://doi.org/10.1017/S096025851000022X DOI: https://doi.org/10.1017/S096025851000022X

Ma J.M., Horbowicz M., Obendorf R.L., 2005. Cyclitol galactosides in embryos of buckwheat stem–leaf–seed explants fed D-chiro-inositol, myo-inositol or D-pinitol. Seed Sci. Res. 15, 329–338. https://doi.org/10.1079/SSR2005221 DOI: https://doi.org/10.1079/SSR2005221

Nešović M., Gašić U., Tosti T., Harvacki N., Nedić N., Sredojević M., Blagojević S., Ignjatović L., Tešić Ž., 2021. Distribution of polyphenolic and sugar compounds in different buckwheat plant parts. Roy. Soc. Chem. Advances 11, 25816–25829. https://doi.org/10.1039/D1RA04250E DOI: https://doi.org/10.1039/D1RA04250E

Noiraud N., Maurousset L., Lemoine R., 2001. Transport of polyols in higher plants. Plant Physiol. Bioch. 39, 717–728. https://doi.org/10.1016/S0981-9428(01)01292-X DOI: https://doi.org/10.1016/S0981-9428(01)01292-X

Obendorf R.L., Horbowicz M., Lahuta L.B., 2012a. Characterization of sugars, cyclitols and galac-tosyl cyclitols in seeds by GC. In: Preedy V (ed) Dietary sugars: chemistry, analysis, function and effects. King’s College London Royal Society of Chemistry Publishing, London, 167–185. https://doi.org/10.1039/9781849734929-00167 DOI: https://doi.org/10.1039/9781849734929-00167

Obendorf R.L., Horbowicz M., Ueda T., Steadman K.J., 2012b. Fagopyritols: occurrence, biosyn-thesis, analyses, and possible role. Eur. J. Plant Sci. Biotechnol. 6, 27–36.

Obendorf R.L., Odorcic S., Ueda T., Coseo M., Vassallo E., 2004. Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterol-ogous expression. Seed Sci. Res. 14, 321–333. https://doi.org/10.1079/SSR2004186 DOI: https://doi.org/10.1079/SSR2004186

Obendorf R.L., Steadman K., Horbowicz M., Lewis B.A., 2000. Molecular structure of fagopyritol A1 (O-- D-galactopyranosyl-(1→3)-D-chiro-inositol) by NMR. Carbohyd. Res. 238,

–627. https://doi.org/10.1016/s0008-6215(00)00133-6 DOI: https://doi.org/10.1016/S0008-6215(00)00133-6

Owczarczyk-Saczonek A., Lahuta L.B., Ligor M., Placek W., Górecki R.J., Buszewski B., 2018. The healing-promoting properties of selected cyclitols-a review. Nutrients 10, 1891. https://doi.org/10.3390/nu10121891 DOI: https://doi.org/10.3390/nu10121891

Pirzadah T.B., Malik B., Tahir I., Rehman R.U., 2019. Buckwheat journey to functional food sector. Curr. Nutr. Food Sci. 15, 1–8. https://doi.org/10.2174/1573401314666181022154332 DOI: https://doi.org/10.2174/1573401314666181022154332

Podolska G., Gujska E., Klepacka J., Aleksandrowicz E., 2021. Bioactive compounds in different buckwheat species. Plants 10, 961. https://doi.org/10.3390/plants10050961 DOI: https://doi.org/10.3390/plants10050961

Ratiu I.A., Al-Suod H., Ligor M., Ligor T., Krakowska A., Górecki R., Buszewski B., 2019. Simul-taneous determination of cyclitols and sugars following a comprehensive investigation of 40 plants. Food Anal. Method. 12, 1466–1478. https://doi.org/10.1007/s12161-019-01481-z DOI: https://doi.org/10.1007/s12161-019-01481-z

Sengupta S., Mukherjee S., Basak P., Majumder A.L., 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6, 656. https://doi.org/ 10.3389/fpls.2015.00656 DOI: https://doi.org/10.3389/fpls.2015.00656

Shen B., Jensen R.G., Bohnert H.J., 1997. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115, 527–532. https://doi.org/10.1104/pp.115.2.527 DOI: https://doi.org/10.1104/pp.115.2.527

Siracusa L., Napoli E., Ruberto G., 2022. Novel chemical and biological insights of inositol deriva-tives in Mediterranean plants. Molecules 27, 1525. https://doi.org/10.3390/molecules27051525 DOI: https://doi.org/10.3390/molecules27051525

Steadman K.J., Fuller D.J., Obendorf R.L., 2001. Purification and molecular structure of two diga-lactosyl D-chiro-inositols and two trigalactosyl D-chiro-inositols from buckwheat seeds. Car-bohyd. Res. 331, 19–25. https://doi.org/10.1016/s0008-6215(00)00320-7 DOI: https://doi.org/10.1016/S0008-6215(00)00320-7

Suzuki T., Noda T., Morishita T., Ishiguro K., Otsuka S., Brunori A., 2020. Present status and future perspectives of breeding for buckwheat quality. Breeding Sci. 70, 48–66. https://doi.org/10.1270/jsbbs.19018 DOI: https://doi.org/10.1270/jsbbs.19018

Szczeciński P., Gryff-Keller A., Horbowicz M., Lahuta L.B., 2000. Galactosylpinitols isolated from vetch seeds (Vicia villosa Roth.). J. Agr. Food Chem. 48, 2717–2720. https://doi.org/10.1021/jf000182g DOI: https://doi.org/10.1021/jf000182g

Szczeciński P., Gryff-Keller A., Horbowicz M., Obendorf R.L., 1998. NMR investigation of the structure of fagopyritol B1 from buckwheat seeds. Bull. Polish Acad. Sci. Chem. 48, 9–13.

Thomas M.P., Mills S.J., Potter B.V., 2016. The "Other" inositols and their phosphates: Synthesis, biology, and medicine (with recent advances in myo-inositol chemistry). Angew. Chem. Int. Ed. Engl. 55, 1614–1650. https://doi.org/10.1002/anie.201502227 DOI: https://doi.org/10.1002/anie.201502227

Wiczkowski W., Szawara-Nowak D., Dębski H., Mitrus J., Horbowicz M., 2014. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int. J. Food Sci. Technol. 49, 1977–1984. https://doi.org/10.1111/ijfs.12484 DOI: https://doi.org/10.1111/ijfs.12484

Wiśniewski K., Jozwik M., Wojtkiewicz J., 2020. Cancer prevention by natural products introduced into the diet-selected cyclitols. Int. J. Mol. Sci. 21, 8988. https://doi.org/10.3390/ ijms2123898 DOI: https://doi.org/10.3390/ijms21238988

Zuluaga A.M., Mena-García A., Chito-Trujillo D., Rada-Mendoza M., Sanz M.L., Ruiz-Matute A.I., 2020. Development of a microwave-assisted extraction method for the recovery of bioac-tive inositols from lettuce (Lactuca sativa) byproducts. Electrophoresis 41, 1804–1811. https://doi.org/10.1002/elps.202000201 DOI: https://doi.org/10.1002/elps.202000201

Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S., 2021. Response mechanism of plants to drought stress. Horticulturae 7, 50. https://doi.org/10.3390/horticulturae7030050 DOI: https://doi.org/10.3390/horticulturae7030050


Opublikowane
26-09-2023



Lesław Bernard Lahuta 
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0001-5999-1871
Joanna Szablińska-Piernik 
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0003-0265-940X
Ryszard J. Górecki 
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0002-6751-3340
Joanna Mitrus 
2Faculty of Exact and Natural Sciences, Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland https://orcid.org/0000-0001-8000-5167
Marcin Horbowicz 
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland https://orcid.org/0000-0002-1789-4034



Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora