Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

The content of total sulphur and sulphate sulphur in soil profile in conditions of different soil cultivation systems

Wiesław Szulc

Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska

Beata Rutkowska

Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska

Jan Łabętowicz

Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska



Abstract

The aim of the paper was the presentation of the total sulphur and sulphate sulphur content in soil profile under differentiated soil cultivation conditions. The studies were carried out in the two long-term field experiments in Chylice. The soil of the experiment field is Mollic Gleysols. The experiments contained 5 different soil tillage systems: deep ploughing (40 cm) once per 5 years, ploughing at 25 cm, skimming (15 cm), ploughing at 25 cm and liming, direct sowing and liming. The soil samples were collected from 3 depths of soil profile: 0–15 cm, 15–30 cm and 30–45 cm. The total sulphur content in the soil by LECO 2000 apparatus and sulphate sulphur content in the soil after extraction in 0.03 mol dm–3 CH3COOH by ICP method, and organic carbon content in soil by LECO 2000 apparatus were determined. The highest content of total sulphur in the soil was observed in conditions of direct sowing (0.30 g kg–1), and the smallest content of this element in the soil was determined in conditions of ploughing at 15 cm (0.21 g kg–1). The highest content of total sulphur in soil always characterized the top layer of soil (0–15 cm). The content of total sulphur in the soil decreased with the depth of soil profile. The content of sulphate sulphur in the soil average at about 30 mg kg–1 regardless utilized soil tillage system. The highest content of S-SO4 was observed in the soil with the deep ploughing, and the smallest content of sulphate sulphur in the soil was observed in conditions of direct sowing. The share of S-SO4 in the total sulphur content in the soil ranged from 9 to 15%.


Bloem E.M. 1998. Schwefel–Bilanz von Agrarökosystemen unter besonderer Berücksichtigung hydrologischer und bodenphysikalischer Standorteigenschaften. 192, ss 156.

Eriksen J., Murphy M.D., Schung E. 1998. The soil sulphur cycle. In: Sulphur in agroecosystems. Edited by Schung E. Dordrecht–Boston–London. Kluwer Academic Publishers, 39–73.

Ensminger L.E., Freney J.R. 1966. Diagnostic techniques for determination sulfur deficiencies in crops and soils. Soil Sci. 101, 283 – 290.

Freney J.R., Stevenson F.J. 1966. Organic sulphur transformations in soils. Soil Sci. 101, 307–316.

Ghani A., Mc Laren R.G., Swift R.S. 1992. Sulfur mineralization and transformations in soils as influenced by additions of carbon, nitrogen and sulfur. Soil Biol. Biochem. 24, 331–341.

Haynes R.J., Swift R.S. 1988. Effect of lime and phosphate addition on changes in enzyme activities, microbial biomass and levels of extracable nitrogen, sulphur and phosphorus in an acid soil. Adv. Agron. 49, 119–199.

Haynes R.J., Williams P.H. 1992. Accumulation of soil organic matter and the forms, mineralization potential and plant – availability of accumulated organic sulphur: effects of improvement and intensive cultivation. Soil Biol. Biochem. 24, 209–217.

Jakubus M., Czekała J., Gładysiak S. 1999. Quantity and quality of humic compounds and sulphur fractions in soil under conditions of long-term differentiated soil reaction and potato monoculture. Zesz. Probl. Post. Nauk Rol. 465, 311–318.

Johnson D.W. 1984. Sulphur cycling in forest. Biogeochemistry 1, 29–43.

Kaczor A., Kozłowska J. 2000. Wpływ kwaśnych opadów na agroekosystemy. Folia Univ. Agric. Stetin. 204 Agricultura 81, 55–68.

Maynard D.G., Stewart J.W.B., Bettany J.R. 1985. The effects of plants on soil sulphur transformations. Soil Biol. Biochem. 17, 127–134.

Morris R.J. 1987. The importance and need for sulphur in crop production in Asia and Pacific region. Proc. Of the Symp. On Fertilizer sulphur requirements and sources in developing countries of Asia and the Pacific, Bangkok, 4–11.

Motowicka-Terelak T., Terelak H. 1998. Siarka w glebach Polski stan i zagrożenie. Biblioteka Monitoringu Srodowiska Warszawa, 1–106.

Motowicka-Terelak T., Terelak H. 2000. Siarka w glebach i roślinach Polski. Folia Univ. Agric. Stetin. 204, Agricultura 81, 7–16.

Scherer H.W. 2001. Sulphur in crop production–invited paper. Europ. J. Agron. 14, 81– 111.

Singh B.R., Abrahemsen G., Stuanes A. 1980. Effect of simulated acid rain on sulphate movement in acid forest. Soil Sci. Soc. Am. J. 44, 75–80.

Stevenson F.J. 1986. Cycles in Soil. John Wiley & Sons, New York, 285–320.

Szulc W. 2002. Wpływ zróżnicowanego nawożenia na zawartość różnych form siarki w glebie. Zesz. Probl. Post. Nauk Rol. 482, 513–518.

Terelak H., Motowicka-TerelakT., Pasternacki J., Wilkos S. 1998. Zawartość form siarki w glebach mineralnych Polski. Pam. Puł. Supl. 891, 1–59.

Wu J., O’Donnell A.G., Syers J.K. 1993. Microbial growth and sulphur immobilization following the incorporation of plant residues into soil. Soil Biol. Biochem. 25, 1567–1573.


Published
2004-03-23



Wiesław Szulc 
Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska
Beata Rutkowska 
Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska
Jan Łabętowicz 
Zakład Chemii Rolniczej, Katedra Nauk o Środowisku Glebowym Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, Polska



License

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 

Agronomy Science has adopted a self-archiving policy called blue by the Sherpa Romeo database. From 2021 authors can self-archive article postprints and editorial versions (under the CC BY 4.0 licence). Articles from earlier years (available under the CC BY-NC-ND 4.0 licence) can only be self-archived as editorial versions.


Most read articles by the same author(s)