The influence of apple fineness degree on the values of effective water diffusion coefficient during drying in the conditions of forced convention

Roland Zawiślak

Katedra Techniki Cieplnej, Akademia Rolnicza w Lublinie, ul. Doświadczalna 44, 20-238 Lublin

Helena Lisowa

Katedra Techniki Cieplnej, Akademia Rolnicza w Lublinie, ul. Doświadczalna 44, 20-238 Lublin


Abstract

Water content and changes in apple ring thickness were measured during the drying process. The initial thickness of apple rings amounted to 5, 7 and 10 mm. The apples were dried in the temperature of 55°C, at the drying air flow velocity of 0,5 m·s-1. On the basis of the conducted studies we found out a significant influence of dried apple fineness degree in the conditions of forced convection on the values of effective water diffusion coefficient. With the increase in thickness of dried rings the values of effective water diffusion coefficient grow. It was also noticed that in the initial period of drying, the values of water diffusion coefficient increase for each thickness of apple rings, despite the decrease of humidity of the dried material. It is after a certain time, amounting to (5 mm) = 4,5·103 s, (7 i 10 mm) = 6,3·103 s, respectively, for the ring thickness of L = 5 mm, 7 and 10 mm, that the decrease of humidity in the dried raw material is accompanied by the decrease of the value of this coefficient, continuing till the end of drying process, i.e. to the humidity of 16%.

Keywords:

effective diffusion coefficient, drying, forced convection, apples

Carbonell J. V., Pinaga F., Yusa V., Pena J. L., 1986. Dehydration of paprika and kinetics of color degradation. J. Food Eng. 5(3), 179–193. DOI: https://doi.org/10.1016/0260-8774(86)90024-5

Crank J., 1975. Mathematics of diffusions. 2nd ed. Oxford University Press, London.

Gürta Seyhan F., Evranuz Ö., 2000. Low temperature mushroom (A. bisporus) drying with desiccant dehumidifiers. Drying Technol. 18(1&2), 433–445. DOI: https://doi.org/10.1080/07373930008917714

Luikov A. V., Michailov J. A., 1965. Theory of energy and mass transfer. Pergamon Press. Oxford.

Nowak D., Lewicki P. P., 1999. Wyznaczanie współczynników dyfuzji wody w procesie suszenia jabłek za pomocą promieni podczerwonych. Zesz. Nauk. Politechniki Łódzkiej 821. Inż. Chem. Proc. 25. Łódź, 87–94.

Pabis S., 1982. Teoria konwekcyjnego suszenia produktów rolniczych. PWRiL Warszawa,43–46.

Pinaga F., Carbonell J. V., Pena J. L., Miguel J. J., 1984. Experimental simulation of solar drying of garlic using an adsorbent energy storage bed. J. Food Engineering 3(3), 187–203. DOI: https://doi.org/10.1016/0260-8774(84)90020-7

Raghavan G. S. V., Tulasidas T. N., Sablani S. S., Ramaswamy H. S., 1995. A method of determination of concentration dependent effective moisture diffusivity. Drying Technol. 13(5–7), 1477–1488. DOI: https://doi.org/10.1080/07373939508917034

Sherwood T. K., 1929. Drying of solids. J. Food Eng. Chem. 21(1), 12–16. DOI: https://doi.org/10.1021/ie50229a004


Published
2002-12-31



Roland Zawiślak 
Katedra Techniki Cieplnej, Akademia Rolnicza w Lublinie, ul. Doświadczalna 44, 20-238 Lublin
Helena Lisowa 
Katedra Techniki Cieplnej, Akademia Rolnicza w Lublinie, ul. Doświadczalna 44, 20-238 Lublin



License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles are made available under the CC BY-NC-ND 4.0  (recognition by authorship, non-commercial use, no dependent works).
The author signs a statement on the originality of the work and the contribution of individuals.

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.


Most read articles by the same author(s)