Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 73 Nr 4 (2018)

Artykuły

Starzenie się nasion – złożony problem banków genów. Praca przeglądowa

DOI: https://doi.org/10.24326/asx.2018.4.2
Przesłane: 9 stycznia 2019
Opublikowane: 19-12-2018

Abstrakt

Starzenie prowadzące do śmierci jest procesem uniwersalnym dotyczącym wszystkich żywych organizmów bez względu na stopień ich złożoności. Długość życia, warunkowana tempem zachodzenia procesów starzenia, jest bardzo zróżnicowana, a rośliny wykazują największy zakres jej zmienności. Procesy starzenia dotyczą również nasion zgromadzonych w przechowalniach długoterminowych banków genów. Zachowanie żywotnych nasion ma zasadnicze znaczenie dla ochrony różnorodności biologicznej, która jest skutecznie i systematycznie niszczona. Dotychczasowe badania nad starzeniem się nasion dotyczyły m.in. wyciszenia metabolizmu, powstawania reaktywnych form tlenu i efektów, jakie ich obecność wywołuje, uszkodzeń biomolekuł, metylacji DNA, a ostatnio także małych niekodujących cząsteczek RNA. Celem pracy jest przybliżenie złożonego, wielopoziomowego procesu, który zachodzi w nasionach w trakcie długotrwałego przechowywania.

Bibliografia

  1. Amsden C.A., 1976. Prehistoric Southwesterners from Basketmaker to Pueblo. AMS Press, Los Angeles.
  2. Bailly C., 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14, 93–107, https://doi.org/10.1079/SSR2004159.
  3. Balestrazzi A., Confalonieri M., Macovei A., Carbonera D., 2011. Seed imbibition in Medicago truncatula Gaertn.: expression profiles of DNA repair genes in relation to PEG-mediated stress. J. Plant Physiol. 168(7), 706–713, https://doi.org/10.1016/j.jplph.2010.10.008.
  4. Bewley J.D., Black M., 1982. Viability and longevity. Physiology and biochemistry of seeds in relation to germination. Springer, Berlin–Heilderberg, 1–59.
  5. Boubriak I., Polischuk V., Grodzinsky A., Osborne D.J., 2007. Telomeres and seed banks. Cytol. Genet. 41, 18–24.
  6. Bouché N., Fait A., Bouchez D., Møller S.G., Fromm H., 2003. Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of re-active oxygen intermediates in plants. Proc. Natl. Acad. Sci. U.S.A. 100, 6843–6848, https://doi.org/10.1073/pnas.1037532100.
  7. Boudet J., Buitink J., Hoekstra F.A., Rogniaux H., Larré C., Satour P., Leprince O., 2006. Com-parative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tol-erance. Plant Physiol. 140, 1418–1436, https://doi.org/10.1104/pp.105.074039.
  8. Bucholc M., Buchowicz J., 1992. Synthesis of extrachromosomal DNA and telomere-related sequences in germinating wheat embryos. Seed Sci. Res. 2, 141–146.
  9. Bucholc M., Buchowicz J., 1995. An extrachromosomal fragment of telomeric DNA in wheat. Plant Mol. Biol. 27, 435–439, https://doi.org/10.1017/S0960258500001264.
  10. Buitink J., Leprince O., 2008. Intracellular glasses and seed survival in the dry state. C. R. Biol. 331, 788–795, https://doi.org/10.1016/j.crvi.2008.08.002.
  11. Châtelain E., Satour P., Laugier E., Vu B.L., Payet N., Rey P., Montrichard, F., 2013. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc. Natl. Acad. Sci. U.S.A. 110, 3633–3638, https://doi.org/10.1073/pnas.1220589110.
  12. Chen H., Chu P., Zhou Y., Li Y., Liu J., Ding Y., Tsang E.W., Jiang L., Wu K., Huang S., 2012. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abi-otic stress tolerance in Arabidopsis. J Exp. Bot. 63, 4107–4121, https://doi.org/10.1093/jxb/ ers093.
  13. Cho J.-N., Ryu J.-Y., Jeong Y.-M., Park J., Song J.-J., Amasino R.M., Noh B., Noh Y.-S., 2012. Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22 (4), 736–748, https://doi.org/10.1016/j.devcel.2012.01.024.
  14. Contreras S., Bennett M.A., Metzger J.D., Tay D., 2008. Maternal light environment during seed development affects lettuce seed weight, germinability, and storability. HortScience 43, 845–852.
  15. Contreras S., Bennett M.A., Metzger J.D., Tay D., Nerson H., 2009. Red to far-red ratio during seed development affects lettuce seed germinability and longevity. HortScience 44(3), 130–134.
  16. Crowe J.H., Carpenter J.F., Crowe L.M., 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60(1), 73–103, https://doi.org/10.1146/annurev.physiol.60.1.73.
  17. Crowe J.H., Oliver A.E., Hoekstra F.A., Crowe L.M., 1997. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35(1), 20–30, https://doi.org/10.1006/cryo.1997.2020.
  18. Currey D.R., 1965. An ancient bristlecone pine stand in eastern Nevada. Ecology 46(4), 564–566, https://doi.org/10.2307/1934900.
  19. De Gara L.d., De Pinto M., Arrigoni O., 1997. Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol. Plant 100(4), 894–900, https://doi.org/10.1111/j.1399-3054.1997.tb00015.x.
  20. Dehaye L., Duval M., Viguier D., Yaxley J., Job D., 1997. Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein. Plant Mol. Biol. 35(5), 605–621.
  21. Ellenberger T., Tomkinson A.E., 2008. Eukaryotic DNA ligases: structural and functional insights. Ann. Rev. Biochem. 77, 313–338, https://doi.org/10.1146/annurev.biochem.77.061306.123941.
  22. Ellis R., Hong T., Roberts E., 1991. Seed moisture content, storage, viability and vigour. Seed Sci. Res. 1(4), 275–279, https://doi.org/10.1017/S0960258500001008.
  23. Ellis W.D., Dunford H.B., 1968. The kinetics of cyanide and fluoride binding by ferric horse-radish peroxidase. Biochemistry 7(6), 2054–2062, https://pubs.acs.org/doi/abs/10.1021/ bi00846a006.
  24. FAO, 2010. The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, pp. 370. Exp. Agric. 47(3), 574, https://doi.org/10.1017/S0014479711000275.
  25. FAO, 2014. Genebank standards for plant genetic resources for food and agriculture. Rome.
  26. Garcia P., Saenz de Miera L., Vences F., Benchacho M., Perez de la Vega M., 2007. Conservation od Spanish wild oats: Avena canariensis, A. prostrata and A. murphyi. In: Maxted, N., Ford-Lloyd, B., Kell, S., Iriondo, J., Dulloo, M., Turok, J. (eds.), Crop wild relative conservation and use. CAB International North America, 413–428.
  27. Harrington J.F., 1963. Practical advice and instructions on seed storage. Proc. ISTA 28, 989–994.
  28. Horvath G., Wessjohann L., Bigirimana J., Monica H., Jansen M., Guisez Y., Cauberg, R., Hore-mans N., 2006. Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallée). Plant Physiol. Bioch. 44(11–12), 724–731, https://doi.org/10.1016/j.plaphy.2006.10.010.
  29. Hu J., Jin J., Qian Q., Huang K., Ding Y., 2016. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genom. 17(1), 684, https://doi.org/10.1186/s12864-016-3032-4.
  30. Hundertmark M., Buitink J., Leprince O., Hincha D.K., 2011. The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Sci. Res. 21(3), 165–173, https://doi.org/10.1017/S0960258511000079.
  31. Job C., Rajjou L., Lovigny Y., Belghazi M., Job D., 2005. Patterns of protein oxidation in Ara-bidopsis seeds and during germination. Plant Physiol. 138(2), 790–802, https://doi.org/10.1104/pp.105.062778.
  32. Kranner I., Chen H., Pritchard H.W., Pearce S.R., Birtić S., 2011. Inter-nucleosomal DNA frag-mentation and loss of RNA integrity during seed ageing. Plant Growth Regul. 63(1), 63–72.
  33. Liu W., Li P., Qi X., Zhou Q., Zheng L., Sun T., Yang Y., 2005. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61(2), 158–167, https://doi.org/10.1016/j.chemosphere.2005.02.078.
  34. Lowenson J.D., Clarke S., 1992. Recognition of D-aspartyl residues in polypeptides by the eryth-rocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypoth-esis. J Biol. Chem. 267(9), 5985–5995.
  35. Lynch A., Barnes R., Vaillancourt R., Cambecèdes J., 1998. Genetic evidence that Lomatia tas-manica (Proteaceae) is an ancient clone. Aust. J. Bot. 46(1), 25–33, https://doi.org/10.1071/BT96120.
  36. Macovei A., Balestrazzi A., Confalonieri M., Faé, M., Carbonera D., 2011. New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol. Bioch. 49(9), 1040–1050, https://doi.org/10.1016/j.plaphy.2011.05.007.
  37. Meng F.-R., Li Y.-C., Yin J., Liu H., Chen X.-J., Ni Z.-F., Sun Q.-X., 2012. Analysis of DNA methylation during the germination of wheat seeds. Biol. Plant. 56(2), 269–275.
  38. Michalak M., Barciszewska M.Z., Barciszewski J., Plitta B.P., Chmielarz P., 2013. Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PloS One 8(8), e70693, https://doi.org/10.1371/journal.pone.0070693.
  39. Møller I.M., Jensen P.E., Hansson A., 2007. Oxidative modifications to cellular components in plants. Annu Rev. Plant Biol. 58, 459–481, https://doi.org/10.1146/annurev.arplant. 58.032806.103946.
  40. Mudgett M.B., Lowenson J.D., Clarke S., 1997. Protein repair L-isoaspartyl methyltransferase in plants (phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds). Plant Physiol. 115(4), 1481–1489, https://doi.org/10.1104/pp.115.4.1481.
  41. Nagel M., Vogel H., Landjeva S., Buck-Sorlin G., Lohwasser U., Scholz U., Börner A., 2009. Seed conservation in ex situ genebanks – genetic studies on longevity in barley. Euphytica 170(1–2), 5–14.
  42. Nakabayashi K., Okamoto M., Koshiba T., Kamiya Y., Nambara E., 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J. 41(5), 697–709, https://doi.org/10.1111/j.1365-313X.2005.02337.x.
  43. Nandi S., Sen-Mandi S., Sinha T., 1997. Active oxygen and their scavengers in rice seeds (Oryza sativa cv. IET 4094) aged under tropical environmental conditions. Seed Sci. Res. 7(3), 253–260, https://doi.org/10.1017/S0960258500003603.
  44. Nguyen T.-P., Keizer P., van Eeuwijk F., Smeekens S., Bentsink L., 2012. Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis. Plant Physiol. 160, 2083–2092, https://doi.org/10.1104/pp.112.206649.
  45. Nonogaki H., Bassel G.W., Bewley J.D., 2010. Germination – still a mystery. Plant Sci. 179(6), 574–581, https://doi.org/10.1016/j.plantsci.2010.02.010.
  46. Oracz K., Bouteau H.E.M., Farrant J.M., Cooper K., Belghazi M., Job C., Job D., Corbineau F., Bailly C., 2007. ROS production and protein oxidation as a novel mechanism for seed dor-mancy alleviation. Plant J. 50(3), 452–465, https://doi.org/10.1111/j.1365-313X.2007 .03063.x.
  47. Papenbrock J., Schmidt A., 2000a. Characterization of a sulfurtransferase from Arabidopsis thali-ana. Eur. J. Biochem. 267(1), 145–154, https://doi.org/10.1046/j.1432-1327.2000.00980.x.
  48. Papenbrock J., Schmidt A., 2000b. Characterization of two sulfurtransferase isozymes from Ara-bidopsis thaliana. The FEBS J. 267(17), 5571–5579, https://doi.org/10.1046/j.1432-1327.2000.01623.x.
  49. Prestrelski S.J., Tedeschi N., Arakawa T., Carpenter J.F., 1993. Dehydration-induced conforma-tional transitions in proteins and their inhibition by stabilizers. Biophys. J. 65(2), 661–671, https://doi.org/10.1016/S0006-3495(93)81120-2.
  50. Priestley D.A., 1986. Seed aging: implications for seed storage and persistence in the soil. Comstock Associates, Ithaca.
  51. Prieto-Dapena P., Castaño R., Almoguera C., Jordano J., 2006. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol. 142(3), 1102–1112, https://doi.org/10.1104/ pp.106.087817.
  52. Rajjou L., Debeaujon I., 2008. Seed longevity: survival and maintenance of high germination ability of dry seeds. C. R. Biol. 331(10), 796–805, https://doi.org/10.1016/j.crvi.2008.07.021.
  53. Rajjou L., Gallardo K., Debeaujon I., Vandekerckhove J., Job C., Job D., 2004. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosyn-thesized mRNAs during germination. Plant Physiol. 134(4), 1598–1613, https://doi.org/10.1104/pp.103.036293.
  54. Rajjou L., Lovigny Y., Groot S.P., Belghazi M., Job C., Job D., 2008. Proteome-wide characteri-zation of seed aging in Arabidopsis: a comparison between artificial and natural aging proto-cols. Plant Physiol. 148(1), 620–641, https://doi.org/10.1104/pp.108.123141.
  55. Riha K., Fajkus J., Siroky J., Vyskot B., 1998. Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10(10), 1691–1698, https://doi.org/ 10.1105/tpc.10.10.1691
  56. Roberts E.H., 1973. Predicting the storage life of seeds. Seed Sci. Technol. 1, 499–514.
  57. Sallon S., Solowey E., Cohen Y., Korchinsky R., Egli M., Woodhatch I., Simchoni O., Kislev M., 2008. Germination, genetics, and growth of an ancient date seed. Science 320(5882), 1464–1464, DOI: 10.1126/science.1153600.
  58. Sano N., Ono H., Murata K., Yamada T., Hirasawa T., Kanekatsu M., 2015. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice. J. Exp. Bot. 66, 4035–4046, https://doi.org/10.1093/jxb/erv209.
  59. Sano N., Permana H., Kumada R., Shinozaki Y., Tanabata T., Yamada T., Hirasawa T., Kanekatsu M., 2012. Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol. 53(4), 687–698, https://doi.org/10.1093/pcp/pcs024.
  60. Sattler S.E., Gilliland L.U., Magallanes-Lundback M., Pollard M., DellaPenna D., 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16(6), 1419–1432, https://doi.org/10.1105/tpc.021360.
  61. Schopfer P., Plachy C., Frahry G., 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125(4), 1591–1602, https://doi.org/10.1104/pp.125.4.1591.
  62. Shen-Miller J., 2002. Sacred lotus, the long-living fruits of China Antique. Seed Sci. Res. 12(3), 131–143, https://doi.org/10.1079/SSR2002112.
  63. Shih M.-d., Hsieh T.-y., Lin T.-p., Hsing Y.-i.C., Hoekstra F.A., 2010. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infra-red spectrometry. Plant Cell Physiol. 51(3), 395–407, https://doi.org/10.1093/pcp/pcq005.
  64. Shimizu T., Kanamori Y., Furuki T., Kikawada T., Okuda T., Takahashi T., Mihara H., Sakurai M., 2010. Desiccation-induced structuralization and glass formation of group 3 late embryogenesis abundant protein model peptides. Biochemistry 49(6), 1093–1104, https://pubs.acs.org/doi/abs/10.1021/bi901745f.
  65. Singh M., Singh S., Randhawa H., Singh J., 2013. Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L.). PLoS One 8(10), e77009, https://doi.org/10.1371/journal.pone.0077009.
  66. Sreenivasulu N., Wobus U., 2013. Seed-development programs: a systems biology – based com-parison between dicots and monocots. Annu. Rev. Plant Biol. 64, 189–217, https://doi.org/10.1146/annurev-arplant-050312-120215.
  67. Stevenson D.E., Hurst R.D., 2007. Polyphenolic phytochemicals – just antioxidants or much more? Cell. Mol. Life Sci. 64(22), 2900–2916.
  68. Van Treuren R., de Groot E., van Hintum T.J., 2013. Preservation of seed viability during 25 years of storage under standard genebank conditions. Genet. Resour. Crop Evol. 60(4), 1407–1421.
  69. Ventura L., Donà M., Macovei A., Carbonera D., Buttafava A., Mondoni A., Rossi G., Balestrazzi A., 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Bioch. 60, 196–206, https://doi.org/10.1016/j.plaphy.2012.07.031.
  70. Verma P., Kaur H., Petla B.P., Rao V., Saxena S.C., Majee M., 2013. Protein L-isoaspartyl me-thyltransferase2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. Plant Physiol. 161, 1141–1157, https://doi.org/10.1104/pp.112.206243.
  71. Wang L., Liu H., Li D., Chen H., 2011. Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genom. 12(1), 154, https://doi.org/10.1186/1471-2164-12-154.
  72. Wang Z., Rhee D.B., Lu J., Bohr C.T., Zhou F., Vallabhaneni H., de Souza-Pinto N.C., Liu Y., 2010. Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genetics 6(5), e1000951, https://doi.org/10.1371/journal.pgen.1000951.
  73. Waterworth W.M., Bray C.M., West C.E., 2015. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 66(12), 3549–3558, https://doi.org/ 10.1093/jxb/erv080.
  74. Waterworth W.M., Masnavi G., Bhardwaj R.M., Jiang Q., Bray C.M., West C.E., 2010. A plant DNA ligase is an important determinant of seed longevity. Plant J. 63(5), 848–860, https://doi.org/10.1111/j.1365-313X.2010.04285.x.
  75. Wituszyńska W., Szechyńska- Hebda M., Sobczak M., Rusaczonek A., Kozłowska- Makulska A., Witoń D., Karpiński S., 2015. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana. Plant Cell Environ. 38(2), 315–330, https://doi.org/10.1111/pce.12288.
  76. Wolkers W.F., McCready S., Brandt W.F., Lindsey G.G., Hoekstra F.A., 2001. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta – Protein Struct. Mol. Enzymol. 1544(1–2), 196–206, https://doi.org/10.1016/ S0167-4838(00)00220-X.

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.