Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 77 Nr 2 (2022)

Artykuły

Możliwość zwiększenia plonu ziemniaka wczesnego przez stosowanie dolistne krzemu

DOI: https://doi.org/10.24326/as.2022.2.6
Przesłane: 6 kwietnia 2022
Opublikowane: 27-07-2022

Abstrakt

This paper analyses the effect of dosage (0.25 dm3 ha–1 or 0.50 dm3 ha–1) and time (the leaf development stage – BBCH 14–16, tuber initiation stage – BBCH 40–41, at both the leaf development stage and tuber initiation stage) of silicon-based stimulant Optysil application (200 g SiOand 24 g Fe in 1 dm3) on early potato yield and yield components. Optysil resulted in an increase in tuber number and tuber weight per plant. As a result, under periodic water deficits during tuber bulking, Optysil increased marketable tuber (with a diameter above 30 mm) yield by an average of 6.90 t ha–1 (50%) and under drought conditions during the potato growth period by 0.70 t ha–1 (8.6%). Under periodic water deficits during tuber bulking, the marketable tuber number per plant and marketable yield were greatest after applying 0.50 dm3 ha–1 of Optysil in the tuber initiation stage (BBCH 40–41). Under drought conditions, the most practical were two Optysil applications at 0.25 dm3 ha–1. The Optysil application improved the market value of the early potato yield by increasing the share of medium-sized tubers (with a diameter of 41–50 mm).

Bibliografia

  1. Abdelaal K.A.A., Mazro Y.S.A., Hafez Y.M., 2020. Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9, 733. https://doi.org/10.3390/plants9060733 DOI: https://doi.org/10.3390/plants9060733
  2. Adavi Z., Moradi R., Saeidnejad A.H., Tadayon M.R., Mansouri H., 2018. Assessment of potato response to climate change and adaptation strategies. Sci. Hort. 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017 DOI: https://doi.org/10.1016/j.scienta.2017.10.017
  3. Artyszak A., Gozdowski D., Kucińska K., 2015. The effect of silicon foliar application in sugar beet – Beta vulgaris (L.) ssp. vulgaris conv. crassa (Alef.) prov. altissima (Döll). Turk. J. Field Crops 20, 115–119. https://doi.org/10.17557/.90799 DOI: https://doi.org/10.17557/.90799
  4. Chang D.C., Jin Y.I., Nam J.H., Cheon C.G., Cho J.H., Kim S.J., 2018. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res. 215, 156–162. https://doi.org/10.1016/j.fcr.2017.10.008 DOI: https://doi.org/10.1016/j.fcr.2017.10.008
  5. Dahal K., Li X-Q., Tai H., Creelman A., Bizimungu B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Front. Plant Sci. 10, 563. https://doi.org/10.3389/fpls.2019.00563 DOI: https://doi.org/10.3389/fpls.2019.00563
  6. Dorneles A.O.S., Pereira A.S., Possebom G., Sasso V.M., Rossato I.V., Tabaldi L.A., 2018. Growth of potato genotypes under different silicon concentrations. Adv. Hort. Sci. 32, 289–295.
  7. Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulans: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agronomy 9, 335. https://doi.org/10.3390/agronomy9060335 DOI: https://doi.org/10.3390/agronomy9060335
  8. Hijmans R.J., 2003. The effect of climate change on global potato ptoduction. Am. J. Potato Res. 80, 271–279. https://doi.org/10.1007/bf02855363 DOI: https://doi.org/10.1007/BF02855363
  9. FAO, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 106, Rome, Italy.
  10. Kafi M., Nabati J., Saadatian B., Oskoueian A., Shabahang J., 2019. Potato response to silicone (micro and nanoparticles) and potassium as affected by salinity stress. Ital. J. Agron. 14, 162–169. https://doi.org/10.4081/ija.2019.1182 DOI: https://doi.org/10.4081/ija.2019.1182
  11. Kaur M., Kalia S., Bhatnagar S.K., Kumar T., Mathur A., 2021. Role of biological silica in enhancement of agricultural productivity: a review. Plant Arch. 21, Suppl. 1, 1578–1583. https://doi.org/10.51470/plantarchives.2021.v21.s1.249 DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.249
  12. Kaushik P., Saini D.K., 2019. Silicon as a vegetable crops modulator – a review. Plants 8, 148. https://doi.org/10.3390/plants8060148 DOI: https://doi.org/10.3390/plants8060148
  13. Kowalska J., Tyburski J., Jakubowska M., Krzymińska J., 2021. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 13, 211–217. https://doi.org/10.1007/s12633-020-00414-4 DOI: https://doi.org/10.1007/s12633-020-00414-4
  14. Laane H.M., 2017. The effects of the application of foliar sprays with stabilized silicic acids: An overview of the results from 2003–2014. Silicon 9, 803–807. https://doi.org/10.1007/s12633-016-9466-0 DOI: https://doi.org/10.1007/s12633-016-9466-0
  15. Lahlou O., Ouattar S., Ledent J.F., 2003. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 23, 257–268. https://doi.org/10.1051/agro:2002089 DOI: https://doi.org/10.1051/agro:2002089
  16. Ługowska M., 2019. Effect of bio-stimulants on the yield of cucumber fruits and on nutrient content. Afr. J. Agric. Res. 14, 2112–2118. https://doi.org/10.5897/ajar2019.14502 DOI: https://doi.org/10.5897/AJAR2019.14502
  17. Luz J.M.Q., Rodrigues C.R., Gonçalves M.V., Coelho L., 2008. The effect of silicate on potatoes in Minas Gerais, Brazil. In: Proceedings of the 4th International Conference on Silicon in Agriculture. Wild Coast Sun, South Africa, 26–31 October, 2008. pp. 60.
  18. Malik M.A., Wani A.H., Mir S.H., Rehman I.U., Tahir I., Ahmad P., Rashid I., 2021. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol. Biochem. 165, 187–195. DOI: https://doi.org/10.1016/j.plaphy.2021.04.021
  19. Meier U. (ed.), 2018. Growth stages of mono- and dicotyledonous plants: BBCH monograph. Open Agrar Repositorium, Quedlinburg, Germany.
  20. Pilon C., Soratto R.P., Broetto F., Fernandes A.M., 2014. Foliar or soil application of silicon alleviate water-deficit stress of potato plants. Agron. J. 106, 2325–2334. https://doi.org/10.2134/agronj14.0176 DOI: https://doi.org/10.2134/agronj14.0176
  21. Radzka E., Lenartowicz T., 2015. Rainfall deficit and excess rainfall during vegetation of early potatoes varieties in central-eastern Poland (1971–2005). Nauka Przyr. Tech. 9(2), 1–14. DOI: https://doi.org/10.17306/J.NPT.2015.2.25
  22. Reddy A.R., Chaitanya K.V., Vivekanandan M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013 DOI: https://doi.org/10.1016/j.jplph.2004.01.013
  23. Rehman M.U., Ilahi H., Adnan M., Wahid F., Rehman F.U., Ullah A., Ullah A., Zia A., Raza M.A., 2021. Application of silicon: a useful way to mitigating drought stress: an overview. Curr. Rese. Agri. Far. 2, 9–17. https://doi.org/10.18782/2582-7146.134 DOI: https://doi.org/10.18782/2582-7146.134
  24. Rizwan M., Ali S., Ibrahim M., Farid M., Adrees M., Bharwana S.A., Zia-ur-Rehman M., Qayyum M.F., Abbas F., 2015. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 22, 15416–15431. https://doi.org/10.1007/s11356-015-5305-x DOI: https://doi.org/10.1007/s11356-015-5305-x
  25. Savvas D., Ntatsi G., 2015. Biostimulant activity of silicon in horticulture. Sci. Hort. 196, 66–81. https://doi.org/10.1016/j.scienta.2015.09.010 DOI: https://doi.org/10.1016/j.scienta.2015.09.010
  26. Shahrajabian M.H., Chaski C., Polyzos N., Petropoulo S.A., 2021. Biostimulants application: a low input cropping management tool for sustainable farming of vegetables. Biomolecules 11, 698. https://doi.org/10.3390/biom11050698 DOI: https://doi.org/10.3390/biom11050698
  27. Skowera B., 2014. Zmiany warunków hydrotermicznych na obszarze Polski (1971–2010) [Changes of hydrothermal conditions in the Polish area (1997–2010)]. Fragm. Agron. 31, 74–87 [in Polish].
  28. Soratto R.P., Fernandes A.M., Crusciol C.A.C., Souza-Schlick G.D., 2012. Produtividade, qualidade de tubérculos e incidência de doenças em batata, influenciados pela aplicação foliar de silício [Yield, tuber quality, and disease incidence on potato crops as affected by silicon leaf application]. Pesq. Agropec. Bras. 47, 1000–1006 [in Portuguese]. DOI: https://doi.org/10.1590/S0100-204X2012000700017
  29. Trawczyński C., 2021. Ocena plonowania i jakości bulw po aplikacji dolistnej krzemu i mikroelementów [Assess of tuber yield and quality after foliar application of silicon and microelements]. Agron. Sci. 76(1), 9–20 [in Polish]. DOI: https://doi.org/10.24326/as.2021.1.1
  30. UNECE Standard FFV-52, 2017. UNECE Standard FFV-52 concerning the marketing and commercial quality control of early and vare potatoes. United Nations, New York and Geneva.
  31. Verma K.K., Song X-P., Lin B., Guo D-J., Singh M., Rajput V.D., Singh R.K., Singh P., Sharma A., Malviya M.K., Chen G-L., Li Y-R., 2022. Silicon induced drought tolerance in crop plants: physiological adaptation strategies. Silicon 15, 2473–2487. https://doi.org/10.1007/s12633-021-01071-x DOI: https://doi.org/10.1007/s12633-021-01071-x
  32. Vulavala V.K.R., Elbaum R., Yermiyahu U., Fogelman E., Kuma A., Ginzberg I., 2016. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta 243, 217–229. https://doi.org/10.1007/s00425-015-2401-6 DOI: https://doi.org/10.1007/s00425-015-2401-6
  33. Wagg C., Hann S., Kupriyanovich Y., Li S., 2021. Timing of short period water stress determines potato growth, yield and tyber quality. Agric. Water Manag. 247, 106731. https://doi.org/10.1016/j.agwat.2020.106731 DOI: https://doi.org/10.1016/j.agwat.2020.106731
  34. Wang M., Wang R., Mur L.A.J., Ruan J., Shen Q., Guo S., 2021. Function of silicon in plant drought stress responses. Hort. Res. 8, 254. DOI: https://doi.org/10.1038/s41438-021-00681-1
  35. Wijesinha-Bettoni R., Mouillé B., 2019. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 96, 139–149. https://doi.org/10.1007/s12230-018-09697-1 DOI: https://doi.org/10.1007/s12230-018-09697-1

Downloads

Download data is not yet available.

Podobne artykuły

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.