Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 1 (2023)

Artykuły

Znaczenie składników odżywczych dla roślin bobowatych grubonasiennych – makroelementy

DOI: https://doi.org/10.24326/as.2023.5006
Przesłane: 24 listopada 2022
Opublikowane: 09-06-2023

Abstrakt

Rośliny potrzebują szerokiej gamy mineralnych składników odżywczych, które biorą udział w biologicznych, biochemicznych i fizjologicznych procesach leżących u podstaw ich wzrostu i rozwoju. Rośliny potrzebują N, P, K, S, Ca i Mg w stosunkowo dużych ilościach (>0,1% suchej masy), a każdy z tych makroelementów jest niezbędny do ukończenia cyklu życiowego rośliny. Zbilansowane nawożenie znacząco poprawia parametry fizjologiczne, wzrostowe i plonotwórcze oraz wielkość i jakość plonu nasion roślin bobowatych grubonasiennych. Ten przegląd prac badawczych przedstawia znaczenie ważniejszych makroelementów dla roślin bobowatych grubonasiennych oraz skutki ich niedoboru.

Bibliografia

  1. Adnan M., Tampubolon K., ur Rehman F., Saeed M. S., Hayyat M. S., Imran M., Tahir R., Mehta J., 2021. Influence of foliar application of magnesium on horticultural crops: A re-view. Agrinula: J. Agroteknologi Dan Perkebunan 4(1), 13–21. https://doi.org/10.36490/agri.v4i1.109 DOI: https://doi.org/10.36490/agri.v4i1.109
  2. Ahmad I., Maathuis F.J., 2014. Cellular and tissue distribution of potassium: physiological; relevance, mechanisms and regulation. J. Plant Physiol. 171(9), 708–714. https://doi.org/10.1016/j.jplph.2013.10.016 DOI: https://doi.org/10.1016/j.jplph.2013.10.016
  3. Andrews M., Andrews M.E., 2017. Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci. 18(4), 705. https://doi.org/10.3390/ijms18040705 DOI: https://doi.org/10.3390/ijms18040705
  4. Ashraf M.A., Ahmad M.SA., Ashraf M., Al-Qurainy F., Ashraf M.Y., 2011. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci. 62(1), 25–38. https://doi.org/10.1071/CP09225 DOI: https://doi.org/10.1071/CP09225
  5. Barczak B., 2010. Siarka jako składnik pokarmowy kształtujący wielkość i jakość plonów wy-branych roślin uprawnych. Rozprawy nr 144, Wyd. Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz, ss. 131.
  6. Barczak B., Nowak K., Knapowski T., Ralcewicz M., Kozera W., 2013a. Reakcja łubinu wą-skolistnego (Lupinus angustifolius L.) na nawożenie siarką. Cz. I. Plon oraz wybrane ele-menty jego struktury. Fragm. Agron. 30(2), 23–34.
  7. Barczak B., Nowak K., Kozera W., Knapowski T., Ralcewicz M., 2013b. Reakcja łubinu wą-skolistnego (Lupinus angustifolius L.) na nawożenie siarką. Cz. II. Zawartość i plon tłusz-czu w nasionach. Fragm. Agron. 30(2), 35–41.
  8. Barłóg P., Niewiadomska A., Ambroży-Deręgowska K., 2014. Effect of sulphur fertilisation on seed yield and yield components of broad bean on the background of different levels of potassium content in soil. Fragm. Agron. 31(2), 7–17.
  9. Bergmann W., 1992. Nutritional disorders of plants. Verlag Gustav Fisher, Jena, 741.
  10. Cabeza R., Koester B., Liese R., Lingner A., Baumgarten V., Dirks J., Salinas-Riester G., Pommerenke C., Dittert K., Schulze J., 2014. An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. Plant Physiol. 164(1), 400–411. https://doi.org/10.1104/pp.113.228312 DOI: https://doi.org/10.1104/pp.113.228312
  11. Carranca C., 2013. Legumes: Properties and symbiosis. W: A.H. Camisão, C.C. Pedroso (red.)., Symbiosis: evolution, biology and ecological effects. Animal Science, Issues and Profes-sions, Nova Science Publishers, New York, 67–94.
  12. Clúa J., Roda C., Zanetti M.E., Blanco F.A., 2018. Compatibility between legumes and rhizo-bia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9(3), 125. https://doi.org/10.3390/genes9030125 DOI: https://doi.org/10.3390/genes9030125
  13. Czuba R., 2001. Znaczenie potasu w polskim rolnictwie. International Potash Institute, Basel, Switzerland, ss. 40, https://docplayer.pl/9736798-Znaczenie-potasu-w-polskim-rolnictwie.html [dostęp: 28.11.2022].
  14. Deng W., Luo K.M., Li D.M., Zheng X.L., Wei X.Y., Smith W., Thammina C., Lu L.T., Li Y., Pei Y., 2006. Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J. Exp. Bot. 57(15), 4235–4243. https://doi.org/10.1093/jxb/erl201 DOI: https://doi.org/10.1093/jxb/erl201
  15. Dhaker S.C., Mundra S.L., Nepalia V., 2010. Effect of weed management and sulphur nutri-tion on productivity of soybean [Glycine max (L.) Merrill]. Indian J. Weed Sci. 42, 232–234. https://www.isws.org.in/IJWSn/File/2010_42_Issue-3&4_232-234.pdf [dostęp: 22.03.2023].
  16. Dimpka C., Weinand T., Asch F., 2009. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32(12), 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x DOI: https://doi.org/10.1111/j.1365-3040.2009.02028.x
  17. Divito G.A., Sadras V.O., 2014. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 156(1), 161–171. https://doi.org/10.1016/j.fcr.2013.11.004 DOI: https://doi.org/10.1016/j.fcr.2013.11.004
  18. Droux M., 2004. Sulfur assimilation and the role of sulfur in plant metabolism: A survey. Photosynth. Res. 79, 331–348. https://doi.org/10.1023/B:PRES.0000017196.95499.11 DOI: https://doi.org/10.1023/B:PRES.0000017196.95499.11
  19. Fageria N.K., Barbosa Filho M.P., Moreira A., Guimarӑes C.M., 2009. Foliar fertilization of crop plants. J. Plant Nutr. 32, 1044–1064. https://doi.org/10.1080/01904160902872826 DOI: https://doi.org/10.1080/01904160902872826
  20. Farhat N., Elkhouni A., Zorrig W., Smaoui A., Abdelly C., Rabhi M., 2016. Effects of magne-sium deficiency on photosynthesis and carbohydrate partitioning. Acta. Physiol. Plant. 38, 145. https://doi.org/10.1007/s11738-016-2165-z DOI: https://doi.org/10.1007/s11738-016-2165-z
  21. Fauvart M., Michiels J., 2008. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol. Lett. 285(1), 1–9. https://doi.org/10.1111/j.1574-6968.2008.01254.x DOI: https://doi.org/10.1111/j.1574-6968.2008.01254.x
  22. Ferguson B.J., Mens C., Hastwell A.H., Zhang M., Su H., Jones C.H., Chu X., Gresshoff P.M., 2019. Legume nodulation: The host controls the party. Plant Cell Environ. 42(1), 41–51. https://doi.org/10.1111/pce.13348 DOI: https://doi.org/10.1111/pce.13348
  23. Fernández V., Brown P.H., 2013. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front. Plant Sci. 4, 289. https://doi.org/10.3389/fpls.2013.00289 DOI: https://doi.org/10.3389/fpls.2013.00289
  24. Filoda G., Mrówczyński M. (red.), 2016. Metodyka integrowanej ochrony i produkcji soi dla doradców. Instytut Ochrony Roślin – PIB, Poznań, ss. 137.
  25. Gaj R., 2018. Precyzyjne nawożenie roślin uprawnych. Centrum Doradztwa Rolniczego w Brwinowie Oddział w Poznaniu. pp. 34.
  26. Głowacka A., Gruszecki T., Szostak B., Michałek S., 2019. The response of common bean to sulphur and molybdenum fertilization. Int. J. Agron. 2, 1–8. https://doi.org/10.1155/2019/3830712 DOI: https://doi.org/10.1155/2019/3830712
  27. Głowacka, A., Jariene, E., Flis-Olszewska, E., Kiełtyka-Dadasiewicz, A., 2023. The effect of nitrogen and sulphur application on soybean productivity traits in temperate climates conditions. Agronomy 13(3), 780. https://doi.org/10.3390/agronomy13030780 DOI: https://doi.org/10.3390/agronomy13030780
  28. Grzebisz W., 2004. Potas w roślinie. W: W. Grzebisz (red.), Potas w produkcji roślinnej. International Potash Institute Basel/Switzerland, Akademia Rolnicza w Poznaniu, 13–22.
  29. Grzebisz W., 2008. Nawożenie roślin uprawnych. T. 2. Nawozy i systemy nawożenia. PWRiL, Poznań.
  30. Grzebisz W., 2011. Technologie nawożenia roślin uprawnych – fizjologia plonowania. T. 1. Oleiste, okopowe i strączkowe. PWRiL, Poznań.
  31. Grzebisz W., 2013. Crop response to magnesium fertilization as affected by nitrogen supply. Plant Soil 368, 23–39. https://doi.org/10.1007/s11104-012-1574-z DOI: https://doi.org/10.1007/s11104-012-1574-z
  32. Guo W., Nazimc H., Lianga Z., Yanga D., 2016. Magnesium deficiency in plants: An urgent problem. Crop J. 4(2), 83–91. https://doi.org/10.1016/j.cj.2015.11.003 DOI: https://doi.org/10.1016/j.cj.2015.11.003
  33. Hauer-Jákli M., Tränkner M., 2019. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00766 DOI: https://doi.org/10.3389/fpls.2019.00766
  34. Hermans C., Conn S.J., Chen J., Xiao Q., Verbruggen N., 2013. An update on magnesium homeostasis mechanisms in plants. Metallomics 5(9), 1170–1183. https://doi.org/10.1039/c3mt20223b DOI: https://doi.org/10.1039/c3mt20223b
  35. Howladar S.M., Osman A.S., Rady M.M., Al-Zahrani H.S., 2014. Magnesium foliar application and phos-phorien soil inoculation positively affect Pisum sativum L. plants grown on sandy calcareous soil. Int. J. Agric., Biosyst. Sci. Eng. 8(5), 239–243. https://doi.org/10.5281/zenodo.1092231
  36. https://rejestrupraw.arimr.gov.pl/
  37. Huang J., Afshar R.K., Tao A., Chen C., 2017. Efficacy of starter N fertilizer and rhizobia inoculant in dry pea (Pisum sativum Linn.) production in a semi-arid temperate environ-ment, Soil Sci. Plant Nutr. 63(3), 248–253. https://doi.org/10.1080/00380768.2017.1315834 DOI: https://doi.org/10.1080/00380768.2017.1315834
  38. Islam M., Mohsan S., Ali S., 2012. Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 46(1), 1–12. http://www.scielo.org.mx/scielo.php?pid=S1405-31952012000100001&script=sci_arttext&tang=en [dostęp: 28.11.2022].
  39. Jadczyszyn T., Kowalczyk J., Lipiński W., 2010. Zalecenia nawozowe dla roślin i uprawy polowej i trwałych użytków zielonych. Materiały szkoleniowe nr 95, Wyd. Instytut Uprawy Nawożenia i Gleboznawstwa-PIB w Puławach, ss. 23.
  40. Jakubus M., 2006. Siarka w środowisku. Wyd. AR Poznań, ss. 61.
  41. Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., Goltsev V., 2014. Identification of nutrient de-ficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurement. Plant Physiol. Biochem. 81, 16–25. https://doi.org/10.1016/j.plaphy.2014.03.029 DOI: https://doi.org/10.1016/j.plaphy.2014.03.029
  42. Klikocka H., Cybulska M., Barczak B., Narolski B., Szostak B., Kobiałka A., Nowak A., Wój-cik E., 2016. The effect of sulphur and nitrogen fertilization on grain yield and technolog-ical quality of spring wheat. Plant Soil Environ. 62, 230–236. https://doi.org/10.17221/18/2016-PSE DOI: https://doi.org/10.17221/18/2016-PSE
  43. Kocoń A., 2014. Nawożenie roślin strączkowych. Stud. Rap. IUNG-PIB 37(11), 127–137. https://doi.org/10.26114/sir.iung.2014.37.10
  44. Korir H., Mungai N.W., Thuita M., Hamba Y., Masso C., 2017. Coinoculation effect of rhi-zobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141. https://doi.org/10.3389/fpls.2017.00141 DOI: https://doi.org/10.3389/fpls.2017.00141
  45. Kotecki A., 2020. Zagadnienia ogólne. W: A. Kotecki (red.), Uprawa roślin, t. 3, 21–42.
  46. Kraiser T., Gras D.E., Gutiérrez A.G., González B., Gutiérrez R.A., 2011. A holistic view of nitrogen acquisition in plants. J. Exp. Bot. 62, 4, 1455–1466, https://doi.org/10.1093/jxb/erq425 DOI: https://doi.org/10.1093/jxb/erq425
  47. Krawczyk R., Mrówczyński M. (red.), 2012. Metodyka integrowanej ochrony łubinu wąsko-listnego, żółtego i białego. Instytut Ochrony Roślin – PIB, Poznań, ss. 132.
  48. Księżak J., 2017. Reakcja grochu siewnego (Pisum satium) na nawożenie mineralne i natural-ne. Fragm. Agron. 34, 77–92.
  49. Lafond J., Pageau D., 2010. Phosphorus and potassium fertilization of dry pea. Can. J. Plant Sci. 90(5), 629–636. https://www.cabdirect.org/cabdirect/abstract/20103292430 DOI: https://doi.org/10.4141/CJPS09152
  50. Leghari S.J., Wahocho N.A., Laghari G.M., Hafeez Laghari A., Mustafa Bhabhan G., Hussain Talpur K., Bhutto T.A., Wahocho S.A., Lashari A.A., 2016. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 10(9), 209–219. https://www.slideshare.net/ShahJahanLaghariAgro/role-of-nitrogen-for-plant-growth-and-development-a-review [dostęp: 07.10.2022].
  51. Li C., Wang P., Menzies N.W., Lombi E., Kopittke P.M., 2017. Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. Ann. Bot. 120, 405–415. https://doi.org/10.1093/aob/mcx063 DOI: https://doi.org/10.1093/aob/mcx063
  52. Lu Z., Lu J., Pan Y., Lu P., Li X., Cong R., Ren T., 2016. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthe-sis. Plant Cell Environ. 39(11), 2428–2439. https://doi.org/10.1111/pce.12795 DOI: https://doi.org/10.1111/pce.12795
  53. Ma X., Liu Y., Shen W., Kuzyakov Y., 2021. Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: Coupling zymography with planar optodes. Appl. Soil Ecol. 167, 104029. https://doi.org/10.1016/j.apsoil.2021.104029 DOI: https://doi.org/10.1016/j.apsoil.2021.104029
  54. Maathuis F.J.M., 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003 DOI: https://doi.org/10.1016/j.pbi.2009.04.003
  55. Mahmud K., Makaju S., Ibrahim R., Missaoui A., 2020. Current progress in nitrogen fixing plants and microbiome research. Plants 9(1), 97. https://doi.org/10.3390/plants9010097 DOI: https://doi.org/10.3390/plants9010097
  56. Martineau E., Domec J.C., Bosc A., Denoroy P., Fandino V.A., Lavres Jr.J., Jordan-Meille L., 2017. The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environ. Exp. Bot. 134, 62–71. https://doi.org/10.1016/j.envexpbot.2016.11.004 DOI: https://doi.org/10.1016/j.envexpbot.2016.11.004
  57. McAllister C.H., Beatty P.H., Good A.G., 2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J. 10(9), 1011–1025. https://doi.org/10.1111/j.1467-7652.2012.00700.x DOI: https://doi.org/10.1111/j.1467-7652.2012.00700.x
  58. McKenzie R.H., Middleton A.B., Solberg E.D., De Mulder J., Flore N., Clayton G.W., Bremer E., 2001. Response of pea to rhizobia inoculation and starter nitrogen in Alberta. Can. J. Plant Sci. 81(4), 637–643. https://doi.org/10.4141/P01-006 DOI: https://doi.org/10.4141/P01-006
  59. Meena B.L., Fagodiya R.K., Prajapat K., Dotaniya M.L., Kaledhonkar M.J., Sharma P.C., Meena R.S., Mitran T., Kumar S., 2018. Legume green manuring: an option for soil sus-tainability. W: R.S. Meena, A. Das, G. Singh Yadaw, R. Lal (red.), Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_12 DOI: https://doi.org/10.1007/978-981-13-0253-4_12
  60. Mitran T., Meena R.S., Lal R., Layek J., Kumar S., Datta R., 2018. Role of soil phosphorus on legume production. W: R.S. Meena, A. Das, G. Singh Yadaw, R. Lal (red.), Legumes for soil health and sustainable management, Springer, Singapore, 487–510. https://doi.org/10.1007/ 978-981-13-0253-4_15 DOI: https://doi.org/10.1007/978-981-13-0253-4_15
  61. Nesme T., Colomb B., Hinsinger P., Watson C., 2014. Soil phosphorus management in organ-ic cropping systems: from current practices to avenues for a more efficient use of P re-sources. W: S. Bellon, S. Penvern (red.), Organic farming, prototype for sustainable agri-cultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7927-3_2 DOI: https://doi.org/10.1007/978-94-007-7927-3_2
  62. Niewiadomska A., Sulewska H., Wolna-Maruwka A., Ratajczak K., Waraczewska Z., Budka A., 2020. The influence of bio-stimulants and foliar fertilizers on yield, plant features, and the level of soil biochemical activity in white lupine (Lupinus albus L.) cultivation. Agronomy 10(1), 150. https://doi.org/10.3390/agronomy10010150 DOI: https://doi.org/10.3390/agronomy10010150
  63. Nuruzzaman M., Lambers H., Bolland M.D.A., Veneklaas E.J., 2006. Distribution of carbox-ylates and acid phosphatase and depletion of different phosphorus fractions in the rhizo-sphere of a cereal and three grain legumes. Plant Soil 281, 109–120. https://doi.org/10.1007/s11104-005-3936-2 DOI: https://doi.org/10.1007/s11104-005-3936-2
  64. Oleksiak T., Bronisz D., 2021. Stan i perspektywy produkcji nasiennej roślin bobowatych grubonasiennych w Polsce. Biul. IHAR-PIB 296, 43–52. https://doi.org/10.37317/biul-2021-0012 DOI: https://doi.org/10.37317/biul-2021-0012
  65. Pacyna S., Schulz M., Scherer H.W., 2006. Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.). Biol. Fertil. Soils 42, 324–329. https://doi.org/10.1007/s00374-005-0030-0 DOI: https://doi.org/10.1007/s00374-005-0030-0
  66. Podleśna A., 2019. Czynniki kształtujące pobieranie i wykorzystanie fosforu przez rośliny oraz jego straty z gleb uprawnych. Stud. Rap. IUNG-PIB 59(13), 59–76.
  67. Rady M.M., Osman A.S., 2010. Possibility of overcoming the adverse conditions for growth of bean plants in sandy calcareous soil by using bio-phosphorus-fertilizer and magnesium fo-liar applications. Egypt. J. Hort. 37, 85–101. https://www.cabdirect.org/cabdirect/abstract/20193140720
  68. Rotaru V., Sinclair T.R., 2009. Interactive influence of phosphorus and iron on nitrogen fixa-tion by soybean. Environ. Exp. Bot. 66(1), 94–99. https://doi.org/10.1016/j.envexpbot. 2008.12.001 DOI: https://doi.org/10.1016/j.envexpbot.2008.12.001
  69. Rubiales D., Mikić A., 2015. Introduction: legumes in sustainable agriculture. Crit. Rev. Plant Sci. 34(1–3), 2–3. https://doi.org/10.1080/07352689.2014.897896 DOI: https://doi.org/10.1080/07352689.2014.897896
  70. Saari L.L., Ludden P.W., 1987. The energetic and energy cost of symbiotic nitrogen fixation. W: T. Kosuge, E.W. Nester (red.), Plant microbe interactions. T. 2. MacMillan Publ. Co., New York, USA.
  71. Salih H.O., 2013. Effect of foliar fertilization of Fe, B and Zn on nutrient concentration and seed protein of Cowpea Vigna unguiculata. J. Agric. Vet. Sci. 6(3), 42–46. DOI: https://doi.org/10.9790/2380-0634246
  72. Santachiara G., Salvagiotti F., Rotundo J.L., 2019. Nutritional and environmental effects on biological nitrogen fixation in soybean: A meta-analysis. Field Crops Res. 240, 106–115. https://doi.org/10.1016/j.fcr.2019.05.006 DOI: https://doi.org/10.1016/j.fcr.2019.05.006
  73. dos Santos Cotrim, G., da Silva, D.M., da Graça, J.P., de Oliveira Junior A., de Castro C., Zocolo G.J., Lannes L.S., Hoffmann-Campo C.B., 2023. Glycine max (L.) mMerr. (Soy-bean) metabolome responses to potassium availability. Phytochemistry 205, 113472. https://doi.org/10.1016/j.phytochem.2022.113472 DOI: https://doi.org/10.1016/j.phytochem.2022.113472
  74. Sarkar R.K., Malik G.C., 2001. Effect of foliar spray of potassium nitrate and calcium nitrate on grasspea (Lathyrus sativus L.) grown in rice fallows. Lathyrus Lathyrism Newsletter 2,
  75. –48. https://www.clima.uwa.edu.au/__data/assets/pdf_file/0011/919640/Sarkar_RK.pdf [dostęp: 28.11.2022].
  76. Scherer H.W., Pacyna S., Spoth K.R., Schulz M., 2008. Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol. Fertil. Soils. 44, 909–916. https://doi.org/10.1007/s00374-008-0273-7 DOI: https://doi.org/10.1007/s00374-008-0273-7
  77. Schweiger P., Hofer M., Hartl W., Wanek W., Vollmann, J., 2012. N2 fixation by organically grown soybean in Central Europe: Method of quantification and agronomic effects. Eur. J. Agron. 41, 11–17. https://doi.org/10.1016/j.eja.2012.01.011 DOI: https://doi.org/10.1016/j.eja.2012.01.011
  78. Singh D.K., Singh A.K., Singh, M., Jamir Z., Srivastava O.P., 2014. Effect of fertility levels and micronutrients on growth, nodulation, yield and nutrient uptake by pea (Pisum sa-tivum L.). Legum. Res. 37, 93–97. https://doi.org/10.5958/J.0976-0571.37.1.014 DOI: https://doi.org/10.5958/j.0976-0571.37.1.014
  79. Singh S., Varma A., 2017. Structure, function, and estimation of leghemoglobin. W: A. Han-sen, D. Choudhary, P. Agrawal, A. Varma (red.), Rhizobium biology and biotechnology. Soil Biol. 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_15 DOI: https://doi.org/10.1007/978-3-319-64982-5_15
  80. Stępień W., Rutkowska B., Szulc W., 2009. Wpływ stosowania różnych nawozów potasowych na plony i jakość roślin. Zesz. Probl. Post. Nauk Rol. 538, 251–256.
  81. Strażyński P., Mrówczyński M. (red.), 2016. Metodyka integrowanej ochrony i produkcji gro-chu dla doradców. Instytut Ochrony Roślin – PIB, Poznań, ss. 150.
  82. Sulewska H., Niewiadomska A., Ratajczak K., Budka A., Panasiewicz K., Faligowska A., Wolna-Maruwka A., Dryjański L., 2020. Changes in Pisum sativum L. plants and in soil as a result of application of selected foliar fertilizers and biostimulators. Agronomy 10(10), 1558. https://doi.org/10.3390/agronomy10101558 DOI: https://doi.org/10.3390/agronomy10101558
  83. Sulieman S., Fischinger S.A., Gresshoff P.M., Schulze J., 2010. Asparagine as a major factor in the N‐feedback regulation of N2 fixation in Medicago truncatula. Physiol. Plant. 140(1), 21–31. https://doi.org/10.1111/j.1399-3054.2010.01380.x DOI: https://doi.org/10.1111/j.1399-3054.2010.01380.x
  84. Sulieman S., Tran L.S.P., 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 239, 36–43. https://doi.org/10.1016/j.plantsci.2015.06.018 DOI: https://doi.org/10.1016/j.plantsci.2015.06.018
  85. Symanowicz B., Kalembasa S., Becher M., Toczko M., Skwarek K., 2017. Effect of varied levels of fertilization with potassium on field pea yield and content and uptake of nitro-gen. Acta Sci. Pol. Agric. 16(3), 163–173. https://doi.org/10.37660/aspagr.2017.16.3.6
  86. Szpunar-Krok E., Wondołowska-Grabowska A., 2022. Quality evaluation indices for soybean oil in relation to cultivar, application of N fertiliser and seed inoculation with Bradyrhizo-bium japonicum. Foods 11, 762. https://doi.org/10.3390/foods11050762 DOI: https://doi.org/10.3390/foods11050762
  87. Szpunar-Krok E., Wondołowska-Grabowska A., Bobrecka-Jamro D., Jańczak-Pieniążek M., Kotecki A., Kozak M., 2021. Effect of nitrogen fertilisation and inoculation with Brady-rhizobium japonicum on the fatty acid profile of soybean (Glycine max (L.) Merrill) seeds. Agronomy 11(5), 941. https://doi.org/10.3390/agronomy11050941 DOI: https://doi.org/10.3390/agronomy11050941
  88. Tränkner M., Jákli B., Tavakol E., Geilfus C.M., Cakmak I., Dittert K., Senbayram M., 2016. Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406, 409–423. https://doi.org/ 10.1007/s11104-016-2886-1 DOI: https://doi.org/10.1007/s11104-016-2886-1
  89. Vuong H.B., Thrall P.H., Barrett L.G., 2016. Host species and environmental variation can influence rhizobial community composition. J. Ecol. 105(2), 540–548. https://doi.org/10.1111/ 1365-2745.12687 DOI: https://doi.org/10.1111/1365-2745.12687
  90. Wang M., Zheng Q., Shen Q., Guo S., 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14(4), 7370–7390. https://doi.org/10.3390/ijms14047370 DOI: https://doi.org/10.3390/ijms14047370
  91. Wang X.G., Zhao X.H., Jiang C.J., Li C.H., Cong S., Wu D., Chen Y.Q., Yu H.Q., Wang C.Y., 2015. Effects of potassium deficiency on photosynthesis and photoprotection mech-anisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 14(5), 856–863. https://doi.org/10.1016/ S2095-3119(14)60848-0 DOI: https://doi.org/10.1016/S2095-3119(14)60848-0
  92. Wang Y., Wu W.H., 2017. Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 39, 123–128. https://doi.org/10.1016/j.pbi.2017.06.006 DOI: https://doi.org/10.1016/j.pbi.2017.06.006
  93. White P.J., Broadley M.R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x DOI: https://doi.org/10.1111/j.1469-8137.2008.02738.x
  94. Wiwart M., Fordoński G., Żuk-Gołaszewska K., Suchowilska E., 2009. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis. Comput. Electron. Agric. 65(1), 125–132. https://doi.org/10.1016/j.compag.2008.08.003 DOI: https://doi.org/10.1016/j.compag.2008.08.003
  95. Zhang Z., Liao H., Lucas W.J., 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J. Integr. Plant Biol. 56(3), 192–220. https://doi.org/10.1111/ jipb.12163 DOI: https://doi.org/10.1111/jipb.12163
  96. Zorb C., Senbayram M., Peiter E., 2014. Potassium in agriculture-status and perspectives. J. Plant Physiol. 171(9), 656–669. https://doi.org/10.1016/j.jplph.2013.08.008 DOI: https://doi.org/10.1016/j.jplph.2013.08.008

Downloads

Download data is not yet available.

Podobne artykuły

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.