Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 78 Nr 4 (2023)

Artykuły

Effect of increasing doses of zinc in combination with organic materials on the occurrence of entomopathogenic fungi in the soil

DOI: https://doi.org/10.24326/as.2023.5176
Przesłane: 16 maja 2023
Opublikowane: 18-04-2024

Abstrakt

The aim of the study was to determine the effect of zinc application in different doses with organic fertilization on the genera composition and the number of CFU (colony-forming units) of entomopathogenic fungi (EPF) in the soil. The experiment was carried out in greenhouse condi-tions. Soil samples for testing were collected in the third year of the experiment (spring, autumn), where the research objects were I – dose of zinc: control – lack (0) and 200, 400 and 600 mg Zn kg–1 of soil; II – no fertilization – 0 (CO), spent mushroom substrate (SMS), chicken (ChM) and cattle manure (CM). Entomopathogenic fungi were isolated using the method of isolation on a selective medium. In the course of the research, EPF of the genus: Beauveria, Metarhizium, Cordyceps and Lecanicillium were determined. The conducted research showed that entomopatho-genic fungi of the Metarhizium genera formed the most CFU in spring. In the autumn there were three times less of them. Statistical analysis showed that the number of CFUs of the identified genus of fungi (on average) in soil samples significantly depended on the dose of zinc applied, organic fertilization and the genus of fungus, but only for Metarhizium spp.

Bibliografia

  1. Afandhi A., Fery A.C., Ito F., Yosep M.A.N.M., Yogo S., 2022. Occurrence of soil-inhabiting en-tomopathogenic fungi within a conventional and organic farm and their virulence against Spodoptera litura. Biodiversitas 23(2), 1172–1180. https://doi.org/10.13057/biodiv/d230263 DOI: https://doi.org/10.13057/biodiv/d230263
  2. Ali-Shtayeh M.S., Mara’I A.B.B.M., Jamous R.M., 2002. Distribution, occurrence and characterization of entomopathogenic fungi in agricultural soil in the Palestinian area. Mycopathologia 156, 235–244. https://doi.org/10.1023/a:1023339103522 DOI: https://doi.org/10.1023/A:1023339103522
  3. Anslan S., Bahram M., Tedersoo L., 2018. Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp.) in boreal forests. Soil Biol. Biochem. 116, 245–252. https://doi.org/10.1016/j.soilbio.2017.10.021 DOI: https://doi.org/10.1016/j.soilbio.2017.10.021
  4. Arnebrandt K., Baath E., Nordgren A., 1987. Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79(6), 890–895. https://doi.org/10.2307/3807691 DOI: https://doi.org/10.1080/00275514.1987.12025478
  5. Bajan C., 2000. Od badań szczegółowych do preparatu grzybowego. Biotechnologia 3(50), 58–64.
  6. Barabasz W., Gains A., Opalińska-Piskorz J., Sepioł J., Tomasik P., 1997. Oddziaływanie jonów na mikroorganizmy. Proceeding of the Scientific Conference „Drobnoustroje w środowisku gle-bowym. Występowanie, aktywność i znaczenie”, Kraków, 3–11.
  7. Bischoff J.F., Rehner S.A., Humber R.A., 2006. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and member of the M. flavoviride complex. Mycologia 98, 737–745. https://doi.org/10.3852/mycologia.98.5.737 DOI: https://doi.org/10.3852/mycologia.98.5.737
  8. Bischoff J.F., Rehner S.A., Humber R.A., 2009. A multilocus phylogeny of the Metarhizium an-isopliae lineage. Mycologia 101, 508–528. https://doi.org/10.3852/07-202 DOI: https://doi.org/10.3852/07-202
  9. Bonnet M., Camarès O., Veisseire P., 2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot. 51, 945–953. https://doi.org/10.1093/jxb/51.346.945 DOI: https://doi.org/10.1093/jxb/51.346.945
  10. Briffa J., Sinagra E., Blundell R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
  11. Bueno-Pallero F.Á., Blanco-Pérez R., Vicente-Díez I., Martin J.A.R., Dionísio L., Campos-Herrera R., 2020. Patterns of occurrence and activity of entomopathogenic fungi in the Algarve (Portugal) using different isolation methods. Insects 11(6), 352. https://doi.org/10.3390/insects11060352 DOI: https://doi.org/10.3390/insects11060352
  12. Clifton E.H., Jaronski S.T., Hodgson E.W., Gassmann A.J., 2015. Abundance of soil-borne ento-mopathogenic fungi in organic and conventional fields in the midwestern USA with an empha-sis on the effect of herbicides and fungicides on fungal persistence. PLoS ONE 10(7), e0133613. https://doi.org/10.1371/journal.pone.0133613 DOI: https://doi.org/10.1371/journal.pone.0133613
  13. Chandler D., Davidson G., Pell J.K., Ball B.V., Shaw K., Sunderland K.D., 2000. Fungal biocontrol of Acari. Biocontrol Sci. Technol. 10, 357–384. https://doi.org/10.1080/09583150050114972 DOI: https://doi.org/10.1080/09583150050114972
  14. El-Sharouny H.M.M., Bagy M.M., El-Shanawany A.A., 1988. Toxicity of heavy metals to Egyptian soil fungi. Int. Biodeterior. Biodegrad. 24, 65–68. DOI: https://doi.org/10.1016/0265-3036(88)90074-7
  15. Ghaley B.B., Vesterdal L., Porter J.R., 2014. Quantification and valuation of ecosystem services in diverse production systems for informed decision-making. Environ. Sci. Policy 39, 139–149. https://doi.org/10.1016/j.envsci.2013.08.004 DOI: https://doi.org/10.1016/j.envsci.2013.08.004
  16. Gorczyca A., 2005. Effect of metal ions on selected characteristics of Beauveria bassiana (Bals) Vuil. Strain Bb5. Part II. Patogenicity. Ecol. Chem. Eng. 12(4), 401–404. Hajek A.E., Leger R.J., 1994. Interaction between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293–322. DOI: https://doi.org/10.1146/annurev.en.39.010194.001453
  17. Hassn W.A., Asaf L.H., Salih M.S.M., 2014. Effect of heavy metals ions on growth, sporulation and pathogenicity of Isaria javanica = (Paecilomyces javanicus). Int. J. Pure Appl. Sci. Technol. 20(2), 1–7.
  18. Humber A.R., 2012. Identification of entomopathogenic fungi. Chapter VI. In: L.A. Lacey (ed.), Manual of techniques in invertebrate pathology. Academic Press, London, 151–187. DOI: https://doi.org/10.1016/B978-0-12-386899-2.00006-3
  19. Inglis G.D., Enkerli J., Goettel M.S., 2012. Laboratory techniques used for entomopathogenic fungi: Hypocreales. Chapter VII. In: L.A. Lacey (ed.), Manual of techniques in invertebrate pathol-ogy. Academic Press, London, 189–253. DOI: https://doi.org/10.1016/B978-0-12-386899-2.00007-5
  20. Jain D., Kour R., Bhojiya A.A., Meena R.H., Singh A., Mohanty S.R., Ameta K.D., 2020. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci. Rep. 10, 13865. https://doi.org/10.1038/s41598-020-70846-w DOI: https://doi.org/10.1038/s41598-020-70846-w
  21. Jaworska M., Radkowska A., Ropek D., Tomasik P., 1996. Effect of metals ions on Paecilomyces fumosoroseus. IOBC/WPRS Bulletin 19(9), 221–224.
  22. Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wyd. Nauk. PWN, Warszawa. Kepler R.M., Luangsa-ard J.J., Hywel-Jones N.L., Quandt C.A., Sung G.H., Rehner S.A., Aime M.C., Henkel T.W., Sanjuan T., Zare R., 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8, 335–353. DOI: https://doi.org/10.5598/imafungus.2017.08.02.08
  23. Kumar C.M.S., Jacob T.K., Devasahayam S., Stephy T., Geethu C., 2018. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol. Res. 207, 153–160. https://doi.org/10.1016/j.micres.2017.11.017 DOI: https://doi.org/10.1016/j.micres.2017.11.017
  24. Kuziemska B., Klej P., Wysokiński A., Jaremko D., Pakuła K., 2022. Cocksfoot under conditions of different doses of this metal and organic fertilization. Agronomy 12, 686. https://doi.org/10.3390/agronomy12030686 DOI: https://doi.org/10.3390/agronomy12030686
  25. Kuziemska B., Wysokiński A., Klej P.E., 2020. Effect of different zinc doses and organic fer-tilization on soil’s enzymatic activity. J. Elem. 25, 108–91099. https://doi.org/10.5601/ jelem.2020.25.1.1927
  26. Kwiatkowska-Malina J., 2017. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 123, 542–545. https://doi.org/10.1016/j.apsoil.2017.06.021 DOI: https://doi.org/10.1016/j.apsoil.2017.06.021
  27. Lenart A., Wolny-Koładka K., 2013. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within arcelormittal Poland steelworks in Cracow. Bull. Environ. Contam. Toxicol. 90(1), 85–90. https://doi.org/10.1007/s00128-012-0869-3 DOI: https://doi.org/10.1007/s00128-012-0869-3
  28. Lin G.C., Paolo S.A.D., Todorova S., Brodeur J., 2019. Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Sci. Rep. 9, 19435. https://doi.org/10.1038/s41598-019-55499-8 DOI: https://doi.org/10.1038/s41598-019-55499-8
  29. Łopusiewicz L., Mazurkiewicz-Zapałowicz K., Tkaczuk C., Bartkowiak A., 2019. The influence of cobalt ions on growth and enzymatic activity of entomopathogenic fungi used in biological plant protection. J. Plant Prot. Res. 60(1), 58–67. https://doi.org/10.24425/jppr.2020.132207 DOI: https://doi.org/10.5586/am.1127
  30. Macdonald C.A., Clark I.M., Zhao F.J., Hirsch P.R., Singh B.K., McGrath S.P., 2011. Long-term impacts of zinc and copper enrichment sewage sludge additions on bacterial, archaeal and fun-gal communities in arable and grassland soils. Soil Biol. Biochem. 43(5), 932– 941. Majchrowska-Safarayn A., Tkaczuk C., Kuziemska B., 2018. Effects of mineral fertilisation with the addition of zinc and copper salts on the occurrence and infectious potential of entompatho-genic fungi in soil. Fresenius Environ. Bull. 27(12), 8765–8772. DOI: https://doi.org/10.1016/j.soilbio.2011.01.004
  31. Micó C., Peris M., Sánchez J., Recatalá L., 2006. Heavy metal content of agricultural soils in a Med-iterranean semiarid area: the Segura River Valley (Alicante, Spain). Span. J. Agric. Res. 4(4), 363–372. https://doi.org/10.5424/sjar/2006044-213 Nielsen F.H., 2012. History of zinc in agriculture. Adv. Nutr. 3, 783–789. https://doi.org/10.3945/ an.112.002881 DOI: https://doi.org/10.5424/sjar/2006044-213
  32. Nordgren A., Bääth E., Söderström B., 1985. Soli microfungi in an area polluted by heavy metals. Canad. J. Bot. 63, 448–455. https://doi.org/10.1139/b85-055 DOI: https://doi.org/10.1139/b85-055
  33. Pečiulytė D., Dirginčiutė-Volodkienė V., 2012. Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija 58(2), 65–85. DOI: https://doi.org/10.6001/ekologija.v58i2.2524
  34. Popowska-Nowak B., Sosak-Świderska C., Bajan C., Bieńkowska P., 2004. Response of isolates of entomopathogenic fungus Metarhizium anisopliae to heavy metal pollution and their accumulative abilities. Ecol. Chem. Eng. 11(1), 71–77.
  35. Quesada-Moraga E., Navas-Cortés J.A., Maranhao E.A. A., Ortiz-Urquiza A., Santiago-Àlvarez C., 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol. Res. 111, 947–966. https://doi.org/10.1016/j.mycres.2007.06.006 DOI: https://doi.org/10.1016/j.mycres.2007.06.006
  36. Ramos Y., Portal O., Lysøe E., Meyling N.V., Klingen I., 2017. Diversity and abundance of Beau-veria bassiana in soils, stink bugs and plant tissues of common bean from organic and conven-tional fields. J. Invertebr. Pathol. 150, 114–120. https://doi.org/10.1016/j.jip.2017.10.003 DOI: https://doi.org/10.1016/j.jip.2017.10.003
  37. Rajapaksha R.M.C.P., 2011. Heavy metal tolerance of culturable bacteria and fungi in a longterm cultivated tropical ultisol. Eur. J. Soil Biol. 47(1), 9–15. DOI: https://doi.org/10.1016/j.ejsobi.2010.10.006
  38. Rajapaksha R.M.C.P., Tobor-Kaplon M.A., Bååth E., 2004. Metal toxicity affects fungal and bacte-rial activities in soil differently. Appl. Environ. Microbiol. 62, 420–428. https://doi.org/10.1128/AEM.70.5.2966-2973.2004 DOI: https://doi.org/10.1128/AEM.70.5.2966-2973.2004
  39. Recena R., García-López A.M., Delgado A., 2021. Zinc uptake by plants as affected by fertilization with Zn sulfate, phosphorus availability, and soil properties. Agronomy 11, 390. https://doi.org/10.3390/agronomy11020390 DOI: https://doi.org/10.3390/agronomy11020390
  40. Rehner S.A., Buckley E.P.A., 2005. Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1), 84–98. https://doi.org/10.3852/mycologia.97.1.84 DOI: https://doi.org/10.3852/mycologia.97.1.84
  41. Rehner S.A., Minnis A.M., Sung G.H., Luangsa-ard J.J., Devotto L., Humber R.A., 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103(5), 1055–1073. https://doi.org/10.3852/10-302 DOI: https://doi.org/10.3852/10-302
  42. Ropek D., Para A., 2003. The effect of heavy metal ions and their complexions upon growth, spor-ulation and pathogenicity of the entomopathogenic fungus Paecilomyces farinosus. Pol. J. Environ. Stud. 12(2), 227–230. https://doi.org/10.1016/S0022-2011(02)00013-7 DOI: https://doi.org/10.1016/S0022-2011(02)00013-7
  43. Rutkowska B., Szulc W., Bomze K., Gozdowski D., Spychaj-Fabisiak K., 2015. Soil factors affect-ing solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 12, 1687–1694. . https://doi.org/10.1007/s13762-014-0546-7 Sadeghzadeh B., 2013. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 13, 90–927. . https://doi.org/10.4067/S0718-95162013005000072 DOI: https://doi.org/10.1007/s13762-014-0546-7
  44. Sharma L., Oliveira I., Raimundo F., Torres L., Marques G., 2018. Soil chemical properties barely perturb the abundance of entomopathogenic fungi Fusarium oxysporum: a case study using a generalized linear mixed model for microbial pathogen occurrence count data. Pathogens 7(4), 89. https://doi.org/10.3390/pathogens7040089 DOI: https://doi.org/10.3390/pathogens7040089
  45. Singh J., Kalamdhad A.S., 2011. Effects of heavy metals on soil, plants, human health and aquatic life. Res. J. Chem. Environ. 1(2), 15–21. Strasser H., Forrer A., Schinner F., 1996. Development of media for the selective isolation and maintenance of virulence of Beauveria brongniartii. In: T.A. Jackson, T.R. Glare (ed.), Micro-bial control of soil dwelling pests. AgResearch, Lincoln, New Zeland, 125–130.
  46. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J., 2012. Heavy metal toxicity and the envi-ronment. In: A Luch (ed.), Molecular, clinical and environmental toxicology. Experientia sup-plementum. Springer, Basel, Switzerland. 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6. DOI: https://doi.org/10.1007/978-3-7643-8340-4_6
  47. Tkaczuk C., Majchrowska-Safaryan A., Panasiuk T., Tipping C., 2019. Effect of selected heavy metal ions on the growth of entomopathogenic fungi from the genus Isaria. Appl. Ecol. Environ. Res. 17(2), 2571–2582. https://doi.org/10.15666/aeer/1702_25712582 DOI: https://doi.org/10.15666/aeer/1702_25712582
  48. Tkaczuk C., 2003. Effect of selected metal ions on the growth and germination of entomopathogenic fungus Paecilomyces fumosoroseus (Wize) Brown and Smith. Ecol. Chem. Eng. 10(3–4), 323–328.
  49. Tkaczuk C., 2005. The effect of selected metal ions on the growth and conidial germination of the aphid pathogenic fungus Pandora neopahidis (Remaudiere at Hennebert). Pol. J. Environ. Stud. 14(6), 897–902.
  50. Tkaczuk C., 2008. Occurrence and infective potential of entomopathogenic fungi in soils of agrocenoses and seminatural habitats in the agricultural landscape. Scientific Dissertation No. 94. Wyd. AP, Siedlce.
  51. Tkaczuk C., Król A., Majchrowska-Safaryan A., Niecewicz Ł., 2014. The occurrence of ento-mopathogenic fungi in soils from fields cultivated in a conventional and organic system. J. Ecol. Eng. 15(4): 137–144. https://doi.org/10.12911/22998993.1125468
  52. Tscherko D., Kandeler E., Bárdossy A., 2007. Fuzzy classification of microbial biomass and enzyme activity in grassland soils. Soil Biol. Biochem. 39, 1799–1808. https://doi.org/10.1016/j.soilbio.2007.02.010 DOI: https://doi.org/10.1016/j.soilbio.2007.02.010
  53. Vänninen I., 1996. Distribution and occurrence of four entomopathogenic fungi in Finland. Effect of geographical location, habitat type and soil type. Mycol. Res. 100, 93–101. DOI: https://doi.org/10.1016/S0953-7562(96)80106-7
  54. Zafar S., Aqil F., Ahmad I., 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 98(13), 2557–2561. https://doi.org/10.1016/j.biortech.2006.09.051 DOI: https://doi.org/10.1016/j.biortech.2006.09.051
  55. Zimmermann M., Wolf K., 2002. A comprehensive treatise on fungi as experimental systems for basic and applied research. In: N.D. Osiewicz (ed.), Bisorption of metal. Industrial Applica-tions. Springer-Verlag, Berlin–Heidelberg. Żurek M., Sapieha-Waszkiewicz A., Marjańska-Cichoń B., 1998. Wpływ łącznego stosowania jo-nów metali z pestycydami na grzyby owadobójcze. Chem. Inż. Ekol. 5(8-9), 789–795.

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.