Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 1 (2024)

Artykuły

Nanocząstki tlenku cynku – przykłady oddziaływań na wzrost i rozwój roślin

DOI: https://doi.org/10.24326/as.2024.5199
Przesłane: 24 maja 2023
Opublikowane: 07-08-2024

Abstrakt

Nanomateriały zawierające tlenek cynku znajdują coraz szersze zastosowanie w różnych gałęziach przemysłu oraz w rolnictwie. Dane literaturowe potwierdzają, że nanocząstki tlenku cynku mogą korzystnie wpływać na kiełkowanie, wzrost roślin, przebieg fotosyntezy i wybrane procesy metaboliczne u różnych gatunków roślin. Użycie nanocząstek tlenku cynku może przyczynić się do poprawy plonowania roślin, jednak konieczne jest dopasowanie dawki tego nanonawozu do fazy rozwoju i gatunku rośliny. Nanocząstki tlenku cynku (ang. zinc oxide nanoparticles, ZnONPs) uwalniają jony cynku, w ten sposób przyczyniają się do lepszego odżywienia roślin w ten składnik i mogą wpływać na zmniejszenie zanieczyszczenia gleby spowodowanego nadmiernym stosowaniem nawozów. Zastosowanie nanocząstek tlenku cynku może też wiązać się z ryzykiem toksykologicznym dla roślin. Toksyczność wywołana przez ZnONPs może przejawiać się zmniejszeniem zdolności kiełkowania, hamowaniem wzrostu, zaburzeniami podziału komórek, nieprawidłową ekspresją genów, objawami stresu oksydacyjnego. Nanotoksyczność tlenku cynku zależy zarówno od wielkości nanocząstek, dawki, jak i gatunku rośliny.

Bibliografia

  1. Alharby H.F., Metwali E.M., Fuller M.P., Aldhebiani A.Y., 2016. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill.) under stress of NaCl and/or ZnO nanoparticles. Saudi J. Biol. Sci. 23, 773–781. https://doi.org/10.1016/j.sjbs.2016.04.012 DOI: https://doi.org/10.1016/j.sjbs.2016.04.012
  2. Alloway B.J., 2009. Soil factors associated with zinc deficiency in crops and human. Environ. Geochem. Health 31, 537–548. https://doi.org/10.1007/s10653-009-9255-4 DOI: https://doi.org/10.1007/s10653-009-9255-4
  3. Akbar S., Tauseef I., Subhan F., Sultana N., Khan I., Ahmed U., Haleem K.S., 2020. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg. Nano-Met. Chem. 50, 961–973. https://doi.org/10.1080/24701556.2019.1711121 DOI: https://doi.org/10.1080/24701556.2019.1711121
  4. Amooaghaie R., Norouzi M., Saeri M., 2017. Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95, 441–455. https://doi.org/10.1139/cjb-2016-0194
  5. Avellan A., Yun J., Morais B.P., Clement E.T., Rodrigues S.M., Lowry G.V., 2021. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ. Sci. Technol. 55, 13417–13431. https://doi.org/10.1021/acs.est.1c00178 DOI: https://doi.org/10.1021/acs.est.1c00178
  6. Bala R., Kalia A., Singh Dhaliwal S., 2019. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J. Soil Sci. Plant Nutr. 19, 379–389. https://doi.org/10.1007/s42729-019-00040-z DOI: https://doi.org/10.1007/s42729-019-00040-z
  7. Balážová L., Baláž M., Babula P., 2020. Zinc oxide nanoparticles damage tobacco BY-2 cells by oxidative stress followed by processes of autophagy and programmed cell death. Nanomaterials 10, 1066. https://doi.org/10.3390/nano10061066 DOI: https://doi.org/10.3390/nano10061066
  8. Batsmanova L. M., Gonchar L.M., Taran N.Y., Okanenko A.A., 2013. Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals (Doctoral dissertation, Sumy State University). Proc. Inter. Con. Nanomat.: Applicat. Propert. 2(4), 04NABM14.
  9. Bian X., Shi L., Yang X., Lu X., 2011. Effect of nano-TiO2 particles on the performance of PVDF, PVDF-g-(maleic anhydride), and PVDF-g-Poly (acryl amide) membranes. Ind. Eng. Chem. Res. 50(21), 12113–12123. https://doi.org/10.1021/ie200232u DOI: https://doi.org/10.1021/ie200232u
  10. Boonyanitipong P., Kumar P., Kositsup B., Baruah S., Dutta J., 2011. Effects of zinc oxide nanoparticles on roots of rice Oryza sativa L. Int. Conf. Environ. BioSci. 21, 172–176. https://doi.org/10.1139/cjb-2016-0194 DOI: https://doi.org/10.1139/cjb-2016-0194
  11. Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A., 2007. Zinc in plants. New Phytol. 173(4), 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x DOI: https://doi.org/10.1111/j.1469-8137.2007.01996.x
  12. Cabot C., Martos S., Llugany M., Gallego B., Tolrà R., Poschenrieder C., 2019. A role for zinc in plant defense against pathogens and herbivores front. Plant Sci. 10, 1–15. https://doi.org/10.3389/fpls.2019.01171 DOI: https://doi.org/10.3389/fpls.2019.01171
  13. Cakmak I., 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00630.x
  14. Canaparo R., Foglietta F., Limongi T., Serpe L., 2020. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 14, 53. https://doi.org/10.3390/ma14010053. DOI: https://doi.org/10.3390/ma14010053
  15. Carpita N.C., Gibeaut D.M., 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3(1), 1–30. https://doi.org/10.1111/j.1365-313x.1993.tb00007.x DOI: https://doi.org/10.1046/j.1365-313X.1993.00999.x
  16. Chen J., Liu X., Wang C., Yin S.S., Li X.L., Hu W.J., Simon M., Shen Z.J., Xiao Q., Chu C.C., Peng X.X., Zheng H.L., 2015. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J. Hazard Mater. 297, 173–182. https://doi.org/10.1016/j.jhazmat.2015.04.077 DOI: https://doi.org/10.1016/j.jhazmat.2015.04.077
  17. Dimkpa C.O., Andrews J., Fugice J., Singh U., Bindraban P.S., Elmer W.H., Gardea-Torresdey J., White J.C., 2020. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Fron. Plant. Sci. 11, 168. https://doi.org/10.3389/fpls.2020.00168 DOI: https://doi.org/10.3389/fpls.2020.00168
  18. Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J., 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction
  19. of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14(9), 1–15. https://doi.org/10.1007/s11051-012-1125-9 DOI: https://doi.org/10.1007/s11051-012-1125-9
  20. Elumalai K., Velmurugan S., 2015. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336. https://doi.org/10.1016/j.apsusc.2015.03.176 DOI: https://doi.org/10.1016/j.apsusc.2015.03.176
  21. Fadoju O.M., Osinowo O.A., Ogunsuyi O.I., Oyeyemi I.T., Alabi O.A., Alimba C.G., Bakare A.A., 2020. Interaction of titanium dioxide and zinc oxide nanoparticles induced cytogenotoxicity in Allium cepa. Nucleus 63, 159–166. https://doi.org/10.1007/s13237-020-00308-1 DOI: https://doi.org/10.1007/s13237-020-00308-1
  22. Feigl G., Kumar D., Lehotai N., Tugyi N., Molnár Á., Ördög A., Kolbert Z., 2013. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol. Environ. Saf. 94, 179–189. https://doi.org/10.1016/j.ecoenv.2013.04.029 DOI: https://doi.org/10.1016/j.ecoenv.2013.04.029
  23. Ghosh M., Jana, A., Sinha, S., Jothiramajayam M., Nag A., Chakraborty A., 2016. Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 807, 25–32. https://doi.org/10.1016/j.mrgentox.2016.07.006 DOI: https://doi.org/10.1016/j.mrgentox.2016.07.006
  24. Gokak I.B., Taranath T.C., 2015. Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. exposed to zinc and zinc nanoparticles. Int. J. Environ. Sci. 5(4), 840–847. https://www.semanticscholar.org/paper/Seed-germination-and-growth-responses-of-uniflorum-Gokak-Taranath/2a9327c00930b28a0469e7f389a9657b2303b2e6 [dostęp: 10.01.2020].
  25. Hassan M. U., Aamer M., Chattha M. U., Haiying T., Shahzad B., Barbanti L., Rasheed M.N., Afzal A., Liu Y., Guoqin H., 2020. The critical role of zinc in plants facing the drought stress. Agriculture 10, 396. https://doi.org/10.3390/agriculture10090396 DOI: https://doi.org/10.3390/agriculture10090396
  26. Helaly M.N., El-Metwally M.A., El-Hoseiny H., Omar S.A., El-Sheery N.I., 2014. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. J. Crop Sci. 8, 612 - 624. https://www.semanticscholar.org/paper/Effect-of-nanoparticles-on-biological-contamination-Helaly-El-Metwally/b85acf81a4544f578145b0e2cf1fa1a491f7c16c [dostęp: 10.01.2020].
  27. Helfenstein J., Pawlowski M.L., Hill C.B., Stewart J., Lagos-Kutz D., Bowen C.R., 2015. Zinc deficiency alters soybean susceptibility to pathogens and pests. J. Plant Nutr. Soil Sci. 178, 896–903. https://doi.org/10.1002/jpln.201500146 DOI: https://doi.org/10.1002/jpln.201500146
  28. Hernandez-Viezcas J.A., Castillo-Michel H., Servin A.D., Peralta-Videa J.R., Gardea-Torresdey J.L., 2011. Spectroscopic verification of zinc absorption and distribution in the desert plant prosopis juliflora-velutina (Velvet mesquite) treated with ZnO nanoparticles. J. Chem. Eng. 170, 346–352. https://doi.org/10.1016/j.cej.2010.12.021 DOI: https://doi.org/10.1016/j.cej.2010.12.021
  29. Jassby D., Cath T.Y., Buisson H., 2018. The role of nanotechnology in industrial water treatment. Nature Nanotech. 13, 670–672. https://doi.org/10.1038/s41565-018-0234-8 DOI: https://doi.org/10.1038/s41565-018-0234-8
  30. Jiang J., Pi J., Cai J., 2018. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 1062562. https://doi.org/10.1155/2018/1062562 DOI: https://doi.org/10.1155/2018/1062562
  31. Kabała K., Janicka-Russak M., 2011. Differential regulation of vacuolar H+-ATPase and H+-PPase in Cucumis sativus roots by zinc and nickel. Plant Sci. 180, 531–539. https://doi.org/10.1016/j.plantsci.2010.11.013 DOI: https://doi.org/10.1016/j.plantsci.2010.11.013
  32. Kaur H., Garg N., 2021. Zinc toxicity in plants: a review. Planta 253, 129. https://doi.org/10.1007/s00425-021-03642-z DOI: https://doi.org/10.1007/s00425-021-03642-z
  33. Korzeniowska J., 2009. Znaczenie cynku w uprawie pszenicy. Post. Nauk Rol. 2, 3–17. https://instytucja.pan.pl/images/stories/pliki/wydzialy/wydzial_v/dwum_pnr/2009/pnr_2_09.pdf [dostęp: 10.01.2020].
  34. Kouhi S.M.M., Lahouti M., Ganjeali A., Entezari M.H., 2015. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses Environ. Sci. Pollut. Res. 22, 10733–10743. https://doi.org/10.1007/s11356-015-4306-0 DOI: https://doi.org/10.1007/s11356-015-4306-0
  35. Kumar A., 2016. Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinacia oleracea grown in soil media. Environ. Contam. Toxicol. 97(4), 548–553. https://doi.org/10.1007/s00128-016-1872-x DOI: https://doi.org/10.1007/s00128-016-1872-x
  36. Lee S., Chung H., Kim S., Lee I., 2013. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Wat. Air Soil Poll. 224, 1–11. https://doi.org/10.1007/s11270-013-1668-0 DOI: https://doi.org/10.1007/s11270-013-1668-0
  37. Li S., Liu J., Wang Y., Gao Y., Zhang Z., Xu J., Xing G., 2021. Comparative physiological and metabolomic analyses revealed that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (Cucumis sativus L.). Food Energy Secur. 101, 269. https://doi.org/10.1002/fes3.269 DOI: https://doi.org/10.1002/fes3.269
  38. Lin D., Xing B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 150(2), 243–250. https://doi.org/10.1016/j.envpol.2007.01.016 DOI: https://doi.org/10.1016/j.envpol.2007.01.016
  39. López-Moreno M.L., De la Rosa G., Hernández-Viezcas J.Á., Castillo-Michel H., Botez C.E., Peralta-Videa J.R., Gardea-Torresdey J.L., 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol. 44, 7315–7320. https://doi.org/10.1021/es903891g DOI: https://doi.org/10.1021/es903891g
  40. Macak M., Candrakova E., Dalovic I., Prasad P.V.V., Farooq M., Korczyk–Szabo J., Kovacik P., Simansky V., 2020. The influence of different fertilization strategies on the grain yield of field peas (Pisum sativum L.) under conventional and conservation tillage. Agronomy 10, 1728. https://doi.org/10.3390/agronomy10111728 DOI: https://doi.org/10.3390/agronomy10111728
  41. Mahajan P., Dhoke S.K., Khanna A.S., 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. 7, 1–7. https://doi.org/10.1155/2011/696535 DOI: https://doi.org/10.1155/2011/696535
  42. Martens D.C., Westermann D.T., 1991. Fertilizer applications for correcting micronutrient deficiencies. W: B.J. Alloway (red.), Micronutrient deficiencies in global crop production. Springer, 549–553. DOI: https://doi.org/10.2136/sssabookser4.2ed.c15
  43. Mirzaei H., Darroudi M., 2017. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43, 907–914. https://doi.org/10.1016/j.ceramint.2016.10.051 DOI: https://doi.org/10.1016/j.ceramint.2016.10.051
  44. Molnár A., Rónavári A., Bélteky P., Szőllősi R., Valyon E., Oláh D., Rázga Z., Ördög A., Kónya Z., Kolbert Z., 2020. ZnO nanoparticles induce cell wall remodeling and modify ROS/ RNS signalling in roots of Brassica seedlings, Ecotoxicology 206, 111158. https://doi.org/10.1016/j.ecoenv.2020.111158 DOI: https://doi.org/10.1016/j.ecoenv.2020.111158
  45. Mukherjee A., Pokhrel S., Bandyopadhyay S., Mädler L., Peralta-Videa J.R., Gardea-Torresdey J.L., 2014. A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe ZnO) in green peas (Pisum sativum L.). J. Chem. Eng. 258, 394–401. https://doi.org/10.1016/j.cej.2014.06.112 DOI: https://doi.org/10.1016/j.cej.2014.06.112
  46. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5), 372–386. https://doi.org/10.1007/s10646-008-0214-0 DOI: https://doi.org/10.1007/s10646-008-0214-0
  47. Peteu S.F., Oancea F., Sicuia O.A., Constantinescu F., Dinu S., 2010. Responsive polymers for crop protection. Polymer 2, 229–251. https://doi.org/10.3390/polym2030229 DOI: https://doi.org/10.3390/polym2030229
  48. Ponce-García C.O., Soto-Parra J.M., Sánchez E., Muñoz-Márquez E., Piña-Ramírez F.J., Flores-Córdova M.A., Pérez-Leal R.., Yáñez Muñoz R.M., 2010. Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy 9(3), 128. https://doi.org/10.3390/agronomy9030128 DOI: https://doi.org/10.3390/agronomy9030128
  49. Prajapati B.J., Patel S.B., Patel R.P., Ramani V.P., 2018. Effect of zinc nano-fertilizer on growth and yield of wheat (Triticum aestivum L.) under saline irrigation condition. Agropedology 28(01), 31–37. http://isslup.in/wp-content/uploads/2020/03/agropadiology_-final-2-Chapter-5.pdf [dostęp: 10.01.2020].
  50. Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reedy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927. https://doi.org/10.1080/01904167.2012.663443 DOI: https://doi.org/10.1080/01904167.2012.663443
  51. Priester J.H., Shelly C.M., Katherine E., Yuan G., Ying W., Roger M.N., Joshua P.S., Goggi S., Gardea-Torresdey, J.L., Patricia, A.H., 2017. Damage assessment for soybean cultivated in soil with either, CeO2 or ZnO manufactured nanomaterials. Sci. Total Environ. 579, 1756–1768. https://doi.org/10.1016/j.scitotenv.2016.11.149 DOI: https://doi.org/10.1016/j.scitotenv.2016.11.149
  52. Puzina T.I., 2004. Effect of zinc sulfate and boric acid on the hormonal status of potato plants in relation to tuberization. Rus. J. Plant Physiol. 51, 209–214. https://doi.org/10.1023/b:rupp.0000019216.92202.4a DOI: https://doi.org/10.1023/B:RUPP.0000019216.92202.4a
  53. Rai-Kalal P., Jajoo-Plant A., 2021. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol. Biochem. 60, 341–351. https://di.org/10.1016/j.plaphy.2021.01.032 DOI: https://doi.org/10.1016/j.plaphy.2021.01.032
  54. Rajput V.D., Singh A., Minkina T., Rawat S., Mandzhieva S., Sushkova S., Upadhyay S.K., 2021. Nano-enabled products: challenges and opportunities for sustainable agriculture. Plants 10, 2727. https://doi.org/10.3390/plants10122727 DOI: https://doi.org/10.3390/plants10122727
  55. Ramesh M., Palanisamy K., Babu K., Sharma N.K., 2014. Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum L. J. Glob. Biosci. 3(2), 415–422. https://www.mutagens.co.in/jgb/vol.03/2/04.pdf
  56. de la Rosa G., López-Moreno M.L., de Haro D., Botez C.E., Peralta-Videa J.R., Gardea-Torresdey J.L., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl. Chem. 85(12), 2161–2174. https://doi.org/10.1351/pac-con-12-09-05 DOI: https://doi.org/10.1351/pac-con-12-09-05
  57. Sabir S., Zahoor M.A., Waseem M., Siddique M.H., Shafique M., Imran M., Muzammil S., 2020. Biosynthesis of ZnO nanoparticles using Bacillus subtilis: characterization and nutritive significance for promoting plant growth in Zea mays L. Dose-Response 18, 3. doi:10.1177/1559325820958911 DOI: https://doi.org/10.1177/1559325820958911
  58. Sadak M.S., Bakry B.A., 2020. Zinc-oxide and nano ZnO effects on growth, some biochemical aspects, yield quantity, and quality of flax (Linum uitatissimum L.) in absence and presence of compost under sandy soil. Bull. Natl. Res. Cent. 44, 98. https://doi.org/10.1186/s42269-020-00348-2 DOI: https://doi.org/10.1186/s42269-020-00348-2
  59. Segatto C., Ternus R., Junges M., Mello J.M.M., Luz J.L., Riella H.G., Fiori M.A., 2018. Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection. Journal IJAERS, 5, 2456-6495. https://doi.org/10.22161/ijaers.5.5.37 DOI: https://doi.org/10.22161/ijaers.5.5.37
  60. Singh A., Sengar R.S., Shahi U.P., Rajput V.D., Minkina T., Ghazaryan K.A., 2023. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3, 33–46. https://doi.org/10.3390/stresses3010004 DOI: https://doi.org/10.3390/stresses3010004
  61. Shaymurat T., Gu J., Xu C., Yang, Z., Zhao Q., Liu Y., Liu Y., 2012. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6, 241–248. https://doi.org/10.3109/17435390.2011.570462 DOI: https://doi.org/10.3109/17435390.2011.570462
  62. Siebielec G., Stuczyński T., Terelak H., Filipiak K., Koza P., Korzeniowska-Pucułek R., Łopatka A., Jadczyszyn J., 2018. Uwarunkowania produkcji rolniczej w regionach o dużym udziale gleb zanieczyszczonych metalami śladowymi. Stud. Rap. IUNG 58, 81–95. https://doi.org/10.26114/sir.iung.2008.12.11
  63. Subbaiah L.V., Prasad T.N., Krishna T.G., Sudhakar P., Reddy B.R., Pradeep T., 2016. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 18, 3778–3788. https://doi.org/10.1021/acs.jafc.6b00838 DOI: https://doi.org/10.1021/acs.jafc.6b00838
  64. Sun L., Wang Y., Wang R., Wang R., Zhang P., Ju Q., Xu J., 2020. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ. Sci. Nano. 7, 3587–3604. https://doi.org/10.1039/D0EN00723D DOI: https://doi.org/10.1039/D0EN00723D
  65. Taheri M., Qarache H. A., Qarache A. A., Yoosefi M., 2015. The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). SFJ 1, 17–20. https://doi.org/10.17975/sfj-2015-011 DOI: https://doi.org/10.17975/sfj-2015-011
  66. Thwala M., Musee N., Sikhwivhilu L., Wepener V., 2013. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci.: Process. Impacts. 15, 1830–1843. https://doi.org/10.1039/C3EM00235G DOI: https://doi.org/10.1039/c3em00235g
  67. Taunk P.B., Das R., Bisen D.P., Tamrakar R.K., 2015. Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method. J. Radiat. Res. Appl. 8, 433–438. https://doi.org/10.1016/j.jrras.2015.03.006 DOI: https://doi.org/10.1016/j.jrras.2015.03.006
  68. Vijay F.V., 2022. Effect of zinc oxide nanoparticles (ZnONPs) on yield attributes and yield of hybrid maize (Zea mays L.). J. Pharm. Innov. 11, 225–228. https://doi.org/10.22271/tpi.2022.v11.i8c.14670 DOI: https://doi.org/10.22271/tpi.2022.v11.i8c.14670
  69. Wan J., Wang R., Bai H., Wang Y., Xu J., 2020. Comparative physiological and metabolomics analysis reveals that single-walled carbon nanoforms and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environ. Sci. Nano 7(10), 2968–2981. https://doi.org/10.1039/D0EN00582G DOI: https://doi.org/10.1039/D0EN00582G
  70. Wang X.P., Li Q.Q., Pei Z.M., Wang S.C., 2018. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant. 62, 801–808. https://doi.org/10.1007/s10535-018-0813-4 DOI: https://doi.org/10.1007/s10535-018-0813-4
  71. Xu J., Luo X., Wang Y., Feng Y., 2018. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ. Sci. Pollut. Res. 185, 91–100. https://doi.org/10.1007/s11356-017-0953-7 DOI: https://doi.org/10.1007/s11356-017-0953-7
  72. Yoon S.J., Kwak J.I., Lee W.M, Holden, Y.J., 2014. An zinc oxide nanoparticles delay soybean development:
  73. a standard soil microcosm study. Ecotoxicol. Environ. Saf. 9, 131–137. https://doi.org/10.1016/j.ecoenv.2013.10.014 DOI: https://doi.org/10.1016/j.ecoenv.2013.10.014
  74. Youssef M.S., Elamawi R.M., 2020. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. ESPR 27, 18972-18984. https://doi.org/10.1007/s11356-018-3250-1 DOI: https://doi.org/10.1007/s11356-018-3250-1
  75. Zhang H., Wang R., Chen Z., Cui P., Lu H., Yang Y., Zhang H., 2021. The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11, 1247. https://doi.org/10.3390/agriculture11121247 DOI: https://doi.org/10.3390/agriculture11121247
  76. Zhang R., Zhang H., Tu C., Hu X., Li L., Luo Y., Christie P., 2015. Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ. Pollut. 22, 11109–11117. https://doi.org/10.1007/s11356-015-4325-x DOI: https://doi.org/10.1007/s11356-015-4325-x
  77. Zhu J., Li J., Shen Y., Liu S., Zeng N., Zhan X., Xing B., 2020. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci. Nano 7, 3901–3913. https://doi.org/10.1039/D0EN00658K DOI: https://doi.org/10.1039/D0EN00658K

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

1 2 3 4 5 6 7 8 9 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.