Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 2 (2024)

Artykuły

Effect of preparations containing humic substances and pure humic acids on colony growth and spore germination of entomopathogenic fungi from the Beauveria genus

DOI: https://doi.org/10.24326/as.2024.5301
Przesłane: 20 listopada 2023
Opublikowane: 02-12-2024

Abstrakt

W doświadczeniu zbadano wpływ dostępnych na rynku preparatów zawierających substancje humusowe w porównaniu z czystymi kwasami humusowymi na wzrost i kiełkowanie zarodników grzybów entomopatogenicznych z rodzaju Beauveria           w warunkach in vitro. Preparaty AmiAGRA, HumiAGRA, AlgoHUM (zalecana dawka polowa) oraz czyste kwasy humusowe, które zostały wyekstrahowane z torfu, węgla brunatnego oraz podłoża popieczarkowego dodano do podłoża hodowlanego Sabourauda. Obserwację wzrostu kolonii testowanych gatunków grzybów owadobójczych prowadzono co 5 dni, aż do dnia 20 mierząc ich średnicę (mm). W drugim etapie doświadczenia, podłoże hodowlane z dodatkiem preparatów i czystych kwasów humusowych nanoszono cienką warstwą na powierzchnię szkiełek podstawowych i wprowadzono 0,1 ml wodnego roztworu z zarodnikami. Obserwację prowadzono po 24 i 48 godzinach, a uzyskane wyniki wyrażono procentowo w stosunku do kontroli. Przeprowadzone badania wykazały, że w 20 dniu hodowli (średnio) preparaty zawierające substancje humusowe działały stymulująco, natomiast czyste kwasy nieznacznie ograniczały wzrost kolonii testowanych izolatów. Wzrost kolonii grzyba B. basianna najsilniej stymulował preparat AmiAGRA, a B. brongniartii HumiAGRA. Udział skiełkowanych zarodników testowanych izolatów, po 48 godzinach kontaktu z podłożem był większy niż po 24. Stwierdzono iż, więcej zarodników kiełkowało na podłożach z dodatkiem preparatów zawierających substancje humusowe, niż czyste kwasy humusowe.                         

Bibliografia

  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., 1997. Gapped BLAST and PSI-BLAST: a new 432 generation of protein database search pro-grams. Nucleic Acids Res. 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389 DOI: https://doi.org/10.1093/nar/25.17.3389
  2. Ayilara M.S., Adeleke B.S., Akinola S.A., Fayose C.A., Adeyemi U.T., Gbadegesin L.A., Omole R.K., Johnson R.M., Uthman Q.O., Babalola O.O., 2023. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phyto-pesticides, and nanobiopesticides. Front. Microbiol. 14, 1040901. https://doi.org/10.3389/fmicb.2023.1040901 DOI: https://doi.org/10.3389/fmicb.2023.1040901
  3. Baker B.P., Green T.A., Loker A.J., 2020. Biological control and integrated pest management in organic and conventional systems. Biol. Control 140, 104095. https://doi.org/10.1016/j.biocontrol.2019.104095 DOI: https://doi.org/10.1016/j.biocontrol.2019.104095
  4. Becher M., Banach-Szott M., Godlewska A., 2021. Organic matter properties of spent button mushroom substrate in the context of soil organic matter reproduction. Agronomy 11(2), 204. https://doi.org/10.3390/agronomy11020204 DOI: https://doi.org/10.3390/agronomy11020204
  5. Becher M., Tołoczko W., Godlewska A., Pakuła K., Żukowski E., 2022. Fractional composition of organic matter and properties of humic acids in the soils of drained bogs of the Sie-dlce Heights in Eastern Poland. J. Ecol. Eng. 23(4), 208–222. https://doi.org/10.12911/22998993/146679 DOI: https://doi.org/10.12911/22998993/146679
  6. Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P., Piccolo A., 2015. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013 DOI: https://doi.org/10.1016/j.scienta.2015.09.013
  7. Canfora L., Tartanus M., Manfredini A., Tkaczuk C., Majchrowska-Safaryan A., Malusà E., 2023. The impact of Beauveria species bioinocula on the soil microbial community structure in organic strawberry plantations. Front. Microbiol. 13, 1073386. https://doi.org/10.3389/fmicb.2022.107338 DOI: https://doi.org/10.3389/fmicb.2022.1073386
  8. Dara S.K., 2019. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 10(1), 12, 1–9. https://doi.org/10.1093/jipm/pmz010 DOI: https://doi.org/10.1093/jipm/pmz010
  9. Dehaliwal G.S., Jindal V., Mohindru B., 2015. Crop Losses due to insect pests: Global and Indian Scenario. Indian J. Entomol. 77(2), 165. https://doi.org/10.5958/0974-8172.2015.00033.4 DOI: https://doi.org/10.5958/0974-8172.2015.00033.4
  10. European Commission (EC), 2009. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides, http://data.europa.eu/eli/dir/2009/128/oj [da-te of access: 22.06.2023].
  11. European Commission, 2023. Search Active Substances, Safeners and Synergists, https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances [date of access: 22.06.2023].
  12. FAO, 2021. Climate Change Fans Spread of Pests and Threatens Plants and Crops, New FAO Study, https://www.fao.org/news/story/en/item/1402920/icode.
  13. Fargues J., Goettel M.S., Smits N., Ouedraogo A., Vidal C., Lacey L.A., 1996. Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 135, 171–181. DOI: https://doi.org/10.1007/BF00632339
  14. Fedoseeva E.V., Tereshina V.M., Danilova E.A. Ianutsevich E.A., Yakimenko O.S., Terek-hova V.A., 2021. Effect of humic acid on the composition of osmolytes and lipids in amelanin-containing phytopathogenic fungus Alternaria alternata. Environ. Res. 193. https://doi.org/10.1016/j.envres.2020.110395 DOI: https://doi.org/10.1016/j.envres.2020.110395
  15. Felizatti A.P., Manzano R.M., Rodrigues I.M.W., das Graças Fernandes M,F., Fernandes J.B., Forim M.R., 2021. Encapsulation of B. bassiana in biopolymers. Improving microbio-logy of insect pest control. Front. Microbiol. 12, 704812. https://doi.org/10.3389/fmicb.2021.704812 DOI: https://doi.org/10.3389/fmicb.2021.704812
  16. Fenibo E.O., Grace N.I., Matambo T., 2021. Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst. 5, 619058. https://doi.org/10.3389/fsufs.2021.619058 DOI: https://doi.org/10.3389/fsufs.2021.619058
  17. Fernandes É.K.K., Rangel D.E.N., Moraes Á.M.L., Bittencourt V.R.E.P., Roberts D.W., 2007. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J. Invertebr. Pathol. 96, 237–243. https://doi.org/10.1016/j.jip.2007.05.007 DOI: https://doi.org/10.1016/j.jip.2007.05.007
  18. Gałązka A., Kocoń A., 2015. Wpływ preparatów z mikroorganizmami pożytecznymi na liczeb-ność i biomasę mikroorganizmów glebowych [The effect of preparations with beneficial microorganisms on the number and biomass of soil microorganisms]. St. Rap. IUNG-PIB 45(19), 127–142.
  19. Geiger F., Bengtsson J., Berendse F., Weisser W., Emmerson M., Morales M., Ceryngier P., Liira J., Tscharntke T., Winqvist C., Eggers S., Bommarco R., Pärt T., Bretagnolle V., Plantegenest M., Clement L.W., Dennis Ch., Palmer C., Oñate J.J., Guerrero I., Hawro V., Aavik T., Thies C., Flohre A., Hänke S., Fischer C., Goedhart P.W., Inchausti P., 2010. Persistent negative effects of pesticides on biodiversity and biological control po-tential on European farmland. Basic Appl. Ecol. 11(2), 97–105. https://doi.org/10.1016/j.baae.2009.12.001 DOI: https://doi.org/10.1016/j.baae.2009.12.001
  20. Grzyb A., Waraczewska Z., Niewiadomska A., Wolna-Maruwka A., 2019. Czym są bioprepara-ty i jakie jest ich zastosowanie? [What are biopreparations and what is their use?]. Na-uka Przyroda Technol. 13(2), 65–76. https://doi.org/10.17306/J.NPT.2019.2.7
  21. Hirose E., Neves P.M.O.J., Zequi J.A.C., Martins L.H., Peralta C.H., Moino A., 2001. Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. Braz. Arch. Biol. Technol. 44(4), 419–423. https://doi.org/10.1590/S1516-89132001000400013 DOI: https://doi.org/10.1590/S1516-89132001000400013
  22. Holka M., Kowalska J., 2023. The potential of adjuvants used with microbiological control of insect pests with emphasis on organic farming. Agriculture 13(9), 1659. https://doi.org/10.3390/agriculture13091659 DOI: https://doi.org/10.3390/agriculture13091659
  23. http://rosahumus.pl/wyniki-badan/2021
  24. Humber R.A., 2012. Identification of entomopathogenic fungi. In: L.A. Lacey (ed.), Manual of techniques in invertebrate pathology. Academic Press, London, 151–187. DOI: https://doi.org/10.1016/B978-0-12-386899-2.00006-3
  25. Jaber L.R., Enkerli J., 2017. Fungal entomopathogens as endophytes: can they promote plant growth?. Biocontrol Sci. Technol. 27(1), 28–41. https://doi.org/10.1080/09583157.2016.1243227 DOI: https://doi.org/10.1080/09583157.2016.1243227
  26. Jamiołkowska A., Hetman B., Skwaryło-Bednarz B., Kopacki M., 2017. Integrowana ochrona roślin w Polsce i Unii Europejskiej oraz prawne podstawy jej funkcjonowania [Integra-ted pest management in Poland and the European Union, and the legal regulations for its functioning. A review]. Ann. UMCS, Agric. 72, 103–111. https://doi.org/10.24326/as.2017.1.8 DOI: https://doi.org/10.24326/as.2017.1.8
  27. de Jardin P., 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
  28. Kalogiannidis S., Kalfas D., Chatzitheodoridis F., Papaevangelou O., 2022. Role of crop-protection technologies in sustainable agricultural productivity and management. Land 11(10), 1680. https://doi.org/10.3390/land11101680 DOI: https://doi.org/10.3390/land11101680
  29. Kaiser D., Bacher S., Mène-Saffrané., Grabenweger G., 2019. Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation. Pest Manag. Sci. 75(2), 556–563. https://doi.org/10.1002/ps.5209 DOI: https://doi.org/10.1002/ps.5209
  30. Kovač M., Gorczak M., Wrzosek M., Tkaczuk C., Pernek M., 2020. Identification of entomopa-thogenic fungi as naturally occurring enemies of the invasive oak lace bug, Corythucha arcuata (Say) (Hemiptera: Tingidae). Insects 11(10), 679. https://doi.org/10.3390/insects11100679 DOI: https://doi.org/10.3390/insects11100679
  31. Kumar D,. Kalita P., 2017. Reducing postharvest losses during storage of grain crops to stre-ngthen food security in developing countries. Foods 6(1), 7. https://doi.org/10.3390/foods6010008 DOI: https://doi.org/10.3390/foods6010008
  32. Kuźmiar A., Włodarczyk K., Gromadzka P., Siara A., Wolińska A., 2021. Aktualny stan wie-dzy na temat biopreparatów stosowanych w rolnictwie [The current state of knowledge about biopreparations used in agriculture]. Lublin, p. 32.
  33. Li Y., 2020. Research progress of humic acid fertilizer on the soil. J. Phys., Conf. Ser. 1549, 022004. https://doi.org/10.1088/1742-6596/1549/2/022004 DOI: https://doi.org/10.1088/1742-6596/1549/2/022004
  34. Lian X., Liao S., Yang Y., Zhang X., Wang Y., 2020. Effect of pH or metal ions on the oil/water interfacial behavior of humic acid based surfactant. Langmuir 36, 10838–10845. DOI: https://doi.org/10.1021/acs.langmuir.0c01874
  35. Luo F., Wang Q., Yin C., Ge Y., Hu F., Huang B., 2015. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant. J. Invertebr. Pathol. 130, 154–164. https://doi.org/10.1016/j.jip.2015.01.003 DOI: https://doi.org/10.1016/j.jip.2015.01.003
  36. Pava-Ripoll M., Angelini C., Fang W., Wang S., Posada F.J., St Leger R., 2011. The rhi-zosphere-competent entomopathogen Metarhizium anisopliae expresses a specific sub-set of genes in plant root exudate. Microbiology 157, 47–55. https://doi.org/10.1099/mic.0.042200-0 DOI: https://doi.org/10.1099/mic.0.042200-0
  37. Majchrowska-Safaryan A., Tkaczuk C., 2023. The effect of biofertilizers containing humic substances on the growth of Beauveria and Metarhizium fungi in vitro. Prog. Plant Prot. 63(2), 73–79. https://doi.org/10.14199/ppp-2023-008 DOI: https://doi.org/10.14199/ppp-2023-008
  38. Mantzoukas S., Lagogiannis I., Karmakolia K., Rodi A., Gazepi M., Eliopoulos P.A., 2020. The effect of grain type on virulence of entomopathogenic fungi against stored product pests. Appl. Sci.10, 2970. https://doi.org/10.3390/app10082970 DOI: https://doi.org/10.3390/app10082970
  39. Mantzoukas S., Grammatikopoulos G., 2020. The effect of three entomopathogenic endophytes of the sweet sorghum on the growth and feeding performance of its pest, Sesamia nonagrioides larvae, and their efficacy under field conditions. Crop Prot. 127, 104952. https://doi.org/10.1016/j.cropro.2019.104952 DOI: https://doi.org/10.1016/j.cropro.2019.104952
  40. de Melo B.A.G., Motta F.L., Santana M.H.A., 2016. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. 62, 967–974. https://doi.org/10.1016/j.msec.2015.12.001 DOI: https://doi.org/10.1016/j.msec.2015.12.001
  41. Ministry of Agriculture and Rural Development. Register of Plant Protection Products,
  42. https://www.gov.pl/web/rolnictwo/rejestr-rodkow-ochrony-roslin [date of access: 22.06.2023].
  43. Moino Jr. A., Alves S.B., 1998. Efeito de imidacloprid e fipronil sobre Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) Sorok. e no comportamento de lim-peza de Heterotermes tenuis (Hagen) [Effects of imidacloprid and fipronil on Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. and on the grooming behavior of Heterotermes tenuis (Hagen)]. An. Soc. Entomol. Bras. 27(4), 611–619. https://doi.org/10.1590/S0301-80591998000400014 DOI: https://doi.org/10.1590/S0301-80591998000400014
  44. Nardi S., Schiavon M., Francioso O., 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 26(8), 2256. https://doi.org/10.3390/molecules26082256 DOI: https://doi.org/10.3390/molecules26082256
  45. Padmavathi J., UmaDevi K., Rao C.U., Reddy N.N., 2003. Telomere fingerprinting for as-sessing chromosome number, isolate typing and recombination in the entomopathogen Beauveria bassiana. Mycol. Res. 107(5), 572–580. https://doi.org/10.1017/s0953756203007573 DOI: https://doi.org/10.1017/S0953756203007573
  46. Pikuła D., 2016. Rola substancji humusowych oraz innowacyjne produkty zwiększające ich zawartość w glebie [The role of humic substances and innovative products increasing their content in the soil]. St. Rap. IUNG-PIB 48(2), 81–93. https://doi.org/10.26114/sir.iung.2016.48.06
  47. Popp J., Pető K., Nagy J., 2013. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33, 243–255. DOI: https://doi.org/10.1007/s13593-012-0105-x
  48. Quintela E.D., McCoy C.W., 1998. Synergistic effect of imidacloprid and two entomopathoge-nic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol. 91, 110–122. DOI: https://doi.org/10.1093/jee/91.1.110
  49. Quesada-Moraga E., González-Mas N., Yousef M., Garrido-Jurado I., Fernandez-Bravo M., 2023. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci. 97, 1–15. https://doi.org/10.1007/s10340-023-01622-8 DOI: https://doi.org/10.1007/s10340-023-01622-8
  50. Roy H.E., Cottrell T.E., 2008. Forgotten natural enemies: Interactions between coccinellids and insect parasitic fungi. Eur. J. Entomol. 105, 391–398. https://doi.org/10.14411/eje.2008.049 DOI: https://doi.org/10.14411/eje.2008.049
  51. Runge T., Latacz-Lohmann U., Schaller L., Todorova K., Daugbjerg C., Termansen M., Liira J., Le Gloux F., Dupraz P., Leppanen J., 2022. Implementation of eco-schemes in fifte-en European Union Member States. EuroChoices 21(2), 19–27. DOI: https://doi.org/10.1111/1746-692X.12352
  52. Rutkowska A., 2016. Biostymulatory w nowoczesnej uprawie roślin [Biostimulants in modern plant cultivation]. St. Rap. IUNG-PIB 48(2), 65–80. https://doi.org/10.26114/sir.iung.2016.48.05
  53. Samson R.A., 1974. Paecilomyces and some allied Hyphomycetes. Stud. Mycol. 6, 1–119.
  54. Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Fungal Barcoding Consortium, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S. Am. 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109 DOI: https://doi.org/10.1073/pnas.1207508109
  55. Sharma A., Mishra M., Shukla A.K., Kumar R., Abdin M.Z., Kar Chowdhuri D., 2019. Corri-gendum to “Organochlorine pesticide, endosulfan induced cellular and organismal re-sponse in Drosophila melanogaster”. [J. Hazard. Mater. 221–222 (2012) 275–287 https://doi.org/10.1016/j.jhazmat.2012.04.045]. J. Hazard. Mater. 379, 120907. DOI: https://doi.org/10.1016/j.jhazmat.2019.120907
  56. da Silva M.S.R.A., dos Santos B.M.S., da Silva C.S.R.A., da Silva C.S.R.A., Antunes L.F.S., dos Santos R.M., Santos C.H.B., Rigobelo E.C., 2021. Humic substances in combina-tion with plant growth-promoting bacteria as an alternative for sustainable agriculture. Front. Microbiol. 12, 719653. https://doi.org/10.3389/fmicb.2021.719653 DOI: https://doi.org/10.3389/fmicb.2021.719653
  57. Sosnowska D., 2013. Progress in research and the use of pathogenic fungi in integrated plant protection. Prog. Plant Prot. 53(4), 747–750. https://doi.org/10.14199/ppp-2013-018 DOI: https://doi.org/10.14199/ppp-2013-018
  58. Sosnowska D., 2018. The contribution of conservation biological control method to integrated plant protection and organic farming. Prog. Plant Prot. 58(4), 288–293. https://doi.org/10.14199/ppp-2018-040 DOI: https://doi.org/10.14199/ppp-2018-040
  59. Sosnowska D., 2019. Parasitic and antagonistic fungi in biological plant protection in Poland. Prog. Plant Prot. 59(4), 223–231. https://doi.org/10.14199/ppp-2019-029 DOI: https://doi.org/10.14199/ppp-2019-029
  60. St. Leger R.J., Wang C., 2010. Genetic engineering of fungal biocontrol agents to achieve efficacy against insect pests. Appl. Microbiol. Biotechnol. 85, 901–907. https://doi.org/10.1007/s00253-009-2306-z DOI: https://doi.org/10.1007/s00253-009-2306-z
  61. Stevenson F.J., 1972. Role and function of humus in soil with emphasis on adsorption of herbicides and chelation of micronutrients. Bioscince 22(11), 643–650. https://doi.org/10.2307/1296265 DOI: https://doi.org/10.2307/1296265
  62. Tanzini M., Alves S., Setten A., Augusto N., 2001. Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae [Compatibility of adjuvants with Be-auveria bassiana and Metarhizium anisopliae]. Manejo Integr. Plagas, 59, 15–18 [in Spanish].
  63. Tkaczuk C., 2008. Występowanie i potencjał infekcyjny grzybów owadobójczych w glebach agrocenoz i środowisk seminaturalnych w krajobrazie rolniczym [Occurrence and infec-tive potential of entomopathigenic fungi in soils of agrocenoses and seminatural habi-tats in the agricultural landscape]. Rozpr. Nauk. 94, Akademia Podlaska, Siedlce [in Polish].
  64. Tomaszewski J.E., Schwarzenbach R.P., Sandar M., 2011. Protein encapsulattion by humic substances. Environ. Sci. Technol. 45(14), 6003–6010. https://doi.org/10.1021/es200663h DOI: https://doi.org/10.1021/es200663h
  65. Ulukan H., 2008. Effect of soil applied humic acid at different sowing times on some yield components of wheat (Triticum spp.) hybrids. Int. J. Botany 4(2), 164–175. https://doi.org/10.3923/ijb.2008.164.175 DOI: https://doi.org/10.3923/ijb.2008.164.175
  66. Verma D.K., Guzmán K.N.R., Mohapatra B., Talukdar D., Chávez-González M.L., Kumar V., Srivastava S., Singh V., Yulianto R., Malar S.E., Ahmad A., Utama G.L., Aguilar C.N., 2021. Recent trends in plant-and microbe-based biopesticide for sustainable crop production and environmental security. In: R. Prasad, V. Kumar, J. Singh, J., C.P. Upadhyaya (eds), Recent developments in microbial technologies. Springer, Singapore, 1–37. DOI: https://doi.org/10.1007/978-981-15-4439-2_1
  67. Vikram N., Sagar A., Gangwar Ch., Husain R., Kewat R.N., 2022. Properties of humic acid substance and their effect in soil quality and plant health. In: A. Makan (ed.), Humus and humic substances – recent advances, 3–14. https://doi.org/10.5772/intechopen.105803 DOI: https://doi.org/10.5772/intechopen.105803
  68. Żak A., 2016. Środki ochrony roślin a zmiany w środowisku naturalnym i ich wpływ na zdro-wie człowieka [Plant protection products versus changes in the natural environment and their impact on the human health]. Zag. Ekon. Rol. 1(346), 155–166 [in Polish]. https://doi.org/10.5604/00441600.1196371 DOI: https://doi.org/10.30858/zer/83045

Downloads

Download data is not yet available.

Podobne artykuły

<< < 12 13 14 15 16 17 18 19 20 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.